Genlou Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985644/publications.pdf Version: 2024-02-01

CENLOU SUN

#	Article	IF	CITATIONS
1	Molecular prospective on the wheat grain development. Critical Reviews in Biotechnology, 2023, 43, 38-49.	9.0	5
2	Transcriptome and Metabolite Insights into Domestication Process of Cultivated Barley in China. Plants, 2022, 11, 209.	3.5	3
3	N6-Methyladenosine dynamic changes and differential methylation in wheat grain development. Planta, 2022, 255, 125.	3.2	2
4	MiR396 regulatory network and its expression during grain development in wheat. Protoplasma, 2021, 258, 103-113.	2.1	17
5	Molecular regulatory mechanisms underlying the adaptability of polyploid plants. Biological Reviews, 2021, 96, 394-407.	10.4	16
6	Origins and chromosome differentiation of <i>Thinopyrum elongatum</i> revealed by <i>PepC</i> and <i>Pgk1</i> genes and ND-FISH. Genome, 2021, 64, 901-913.	2.0	6
7	Genome-Wide Identification of Triticum aestivum Xylanase Inhibitor Gene Family and Inhibitory Effects of XI-2 Subfamily Proteins on Fusarium graminearum GH11 Xylanase. Frontiers in Plant Science, 2021, 12, 665501.	3.6	2
8	Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. Protoplasma, 2021, 258, 881-889.	2.1	7
9	MicroRNA-mediated responses to colchicine treatment in barley. Planta, 2020, 251, 44.	3.2	4
10	Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC Plant Biology, 2020, 20, 526.	3.6	7
11	Physiological and transcriptional response to heat stress in heat-resistant and heat-sensitive maize (Zea mays L.) inbred lines at seedling stage. Protoplasma, 2020, 257, 1615-1637.	2.1	19
12	Population genetic variation characterization of the boreal tree Acer ginnala in Northern China. Scientific Reports, 2020, 10, 13515.	3.3	1
13	Phylogenetic analysis of two single-copy nuclear genes revealed origin of tetraploid barley Hordeum marinum. PLoS ONE, 2020, 15, e0235475.	2.5	2
14	Insights into the N ⁶ -methyladenosine mechanism and its functionality: progress and questions. Critical Reviews in Biotechnology, 2020, 40, 639-652.	9.0	15
15	Nucleotide diversity patterns at the DREB1 transcriptional factor gene in the genome donor species of wheat (Triticum aestivum L). PLoS ONE, 2019, 14, e0217081.	2.5	2
16	Evolutionary mechanism of genome duplication enhancing natural autotetraploid sea barley adaptability to drought stress. Environmental and Experimental Botany, 2019, 159, 44-54.	4.2	12
17	Genome constitution and evolution of Elytrigia lolioides inferred from Acc1, EF-G, ITS, TrnL-F sequences and GISH. BMC Plant Biology, 2019, 19, 158.	3.6	6
18	Identification of QTL underlying the leaf length and area of different leaves in barley. Scientific Reports, 2019, 9, 4431.	3.3	18

Genlou Sun

#	Article	IF	CITATIONS
19	Transcriptome and miRNAs analyses enhance our understanding of the evolutionary advantages of polyploidy. Critical Reviews in Biotechnology, 2019, 39, 173-180.	9.0	12
20	Phylogenetic analysis of two single-copy nuclear genes revealed origin and complex relationships of polyploid species of Hordeum in Triticeae (Poaceae). Genome, 2017, 60, 518-529.	2.0	1
21	micro <scp>RNA</scp> s contribute to enhanced salt adaptation of the autopolyploid <i>Hordeum bulbosum</i> compared with its diploid ancestor. Plant Journal, 2017, 91, 57-69.	5.7	44
22	Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition. BMC Genetics, 2017, 18, 94.	2.7	18
23	Transcriptome analysis reveals plant response to colchicine treatment during on chromosome doubling. Scientific Reports, 2017, 7, 8503.	3.3	17
24	QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genetics, 2016, 17, 103.	2.7	46
25	Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley. Scientific Reports, 2016, 6, 36122.	3.3	9
26	Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum. Scientific Reports, 2016, 6, 31706.	3.3	4
27	Comparison of gene flow among species that occur within the same geographic locations versus gene flow among populations within species reveals introgression among several <i>Elymus</i> species. Journal of Systematics and Evolution, 2016, 54, 152-161.	3.1	3
28	Origin and Evolution of Allopolyploid Wheatgrass Elymus fibrosus (Schrenk) Tzvelev (Poaceae:) Tj ETQq0 0 0 rgB	T /Overloc 2.5	k 10 Tf 50 38
29	Genetic Divergence in Domesticated and Non-Domesticated Gene Regions of Barley Chromosomes. PLoS ONE, 2015, 10, e0121106.	2.5	6
30	Origin and Reticulate Evolutionary Process of Wheatgrass Elymus trachycaulus (Triticeae: Poaceae). PLoS ONE, 2015, 10, e0125417.	2.5	3
31	Identification of a Novel Allele of TaCKX6a02 Associated with Grain Size, Filling Rate and Weight of Common Wheat. PLoS ONE, 2015, 10, e0144765.	2.5	38
32	Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat. PLoS ONE, 2015, 10, e0145970.	2.5	57
33	Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content. Frontiers in Plant Science, 2015, 6, 803.	3.6	28
34	Molecular phylogeny revealed distinct origin of the Y and St genome in Elymus longearistatus (Triticeae: Poaceae). Molecular Phylogenetics and Evolution, 2015, 85, 141-149.	2.7	8
35	Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genetics, 2015, 16, 29.	2.7	43
36	Phylogenetic analysis of the genus Pseudoroegneria and the Triticeae tribe using the rbcL gene. Biochemical Systematics and Ecology, 2015, 62, 73-81.	1.3	9

Genlou Sun

#	Article	IF	CITATIONS
37	Cloning and Characterization of Low-Molecular-Weight Glutenin Subunit Alleles from Chinese Wheat Landraces (<i>Triticum aestivum</i> L.). Scientific World Journal, The, 2014, 2014, 1-6.	2.1	4
38	Nuclear and chloroplast DNA phylogeny reveals complex evolutionary history of <i>Elymus pendulinus</i> . Genome, 2014, 57, 97-109.	2.0	6
39	Effects of nitrogen spraying on the post-anthesis stage of winter wheat under waterlogging stress. Acta Physiologiae Plantarum, 2014, 36, 207-216.	2.1	33
40	Molecular phylogeny revealed complex evolutionary process in <i>Elymus</i> species. Journal of Systematics and Evolution, 2014, 52, 706-711.	3.1	16
41	Molecular evolution and nucleotide diversity of nuclear plastid phosphoglycerate kinase (PGK) gene in Triticeae (Poaceae). Gene, 2014, 533, 142-148.	2.2	11
42	Comparison of Acetyl-CoA carboxylase 1 (Acc-1) gene diversity among different Triticeae genomes. Gene, 2014, 546, 11-15.	2.2	2
43	Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. Gene, 2014, 543, 237-243.	2.2	40
44	A Comprehensive Analysis of the Cupin Gene Family in Soybean (Glycine max). PLoS ONE, 2014, 9, e110092.	2.5	20
45	Phylogenetic analysis revealed reticulate evolution of allotetraploid Elymus ciliaris. Molecular Phylogenetics and Evolution, 2013, 69, 805-813.	2.7	9
46	Tibet as a Potential Domestication Center of Cultivated Barley of China. PLoS ONE, 2013, 8, e62700.	2.5	30
47	Multiple origins of allopolyploid wheatgrass Elymus caninus revealed by RPB2, PepC and TrnD/T genes. Molecular Phylogenetics and Evolution, 2012, 64, 441-451.	2.7	23
48	Untangling Nucleotide Diversity and Evolution of the H Genome in Polyploid Hordeum and Elymus Species Based on the Single Copy of Nuclear Gene DMC1. PLoS ONE, 2012, 7, e50369.	2.5	9
49	Molecular phylogeny of diploid Hordeum species and incongruence between chloroplast and nuclear datasets. Genome, 2011, 54, 986-992.	2.0	7
50	Distinct Origin of the Y and St Genome in Elymus Species: Evidence from the Analysis of a Large Sample of St Genome Species Using Two Nuclear Genes. PLoS ONE, 2011, 6, e26853.	2.5	34
51	Nucleotide divergence and genetic relationships of Pseudoroegneria species. Biochemical Systematics and Ecology, 2011, 39, 309-319.	1.3	12
52	Origin of the H genome in StH-genomic <i>Elymus</i> species based on the single-copy nuclear gene <i>DMC1</i> . Genome, 2011, 54, 655-662.	2.0	7
53	Molecular phylogeny and reticulate origins of several American polyploid <i>Hordeum</i> species. Botany, 2011, 89, 405-415.	1.0	6
54	Genomic constitution and phylogenetic position of several New Zealand Triticeae species revealed by two single copy nuclear genes. Australian Journal of Botany, 2011, 59, 1.	0.6	3

GENLOU SUN

#	Article	IF	CITATIONS
55	RPB2 sequences reveal a close phylogenetic relationship between tetraploid Hordelymus and diploid Hordeum species in Triticeae (Poaceae). Biochemical Systematics and Ecology, 2010, 38, 789-795.	1.3	2
56	Inheritance and identification of molecular markers associated with a novel dwarfing gene in barley. BMC Genetics, 2010, 11, 89.	2.7	29
57	Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Molecular Phylogenetics and Evolution, 2010, 56, 727-733.	2.7	38
58	Phylogenetic analysis of the maternal genome of tetraploid StStYY Elymus (Triticeae: Poaceae) species and the monogenomic Triticeae based on rps16 sequence data. Plant Science, 2010, 178, 463-468.	3.6	16
59	Molecular evolution and phylogeny of the RPB2 gene in the genus Hordeum. Annals of Botany, 2009, 103, 975-983.	2.9	33
60	Nucleotide diversity and minisatellite in chloroplast Asp(GUC)–Thr(GGU) region in Elymus trachycaulus complex, Elymus alaskanus and Elymus caninus. Biochemical Systematics and Ecology, 2009, 37, 67-75.	1.3	5
61	Inheritance of genes controlling supernumerary spikelet in wheat line 51885. Euphytica, 2009, 167, 173-179.	1.2	8
62	Molecular evolution and origin of tetraploid <i>Elymus</i> species. Breeding Science, 2009, 59, 487-491.	1.9	20
63	Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Molecular Phylogenetics and Evolution, 2008, 46, 897-907.	2.7	76
64	Microsatellite variability and heterozygote excess in Elymus trachycaulus populations from British Columbia in Canada. Biochemical Systematics and Ecology, 2007, 35, 725-736.	1.3	26
65	Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species. Plant Molecular Biology, 2007, 64, 645-655.	3.9	50
66	Genetic diversity of rbcL gene in Elymus trachycaulus complex and their phylogenetic relationships to several Triticeae species. Genetic Resources and Crop Evolution, 2007, 54, 1737-1746.	1.6	11
67	Molecular diversity and relationships among Elymus trachycaulus, E. subsecundus, E.Âvirescens, E.Âviolaceus, and E.Âhyperarcticus (Poaceae: Triticeae) as determined by amplified fragment length polymorphism. Genome, 2006, 49, 1160-1169.	2.0	7
68	Molecular diversity and relationships of North American Elymus trachycaulus and the Eurasian E. caninus species. Genetica, 2006, 127, 55-64.	1.1	7
69	Identification of Pseudomonas aeruginosa-induced genes in human mast cells using suppression subtractive hybridization: up-regulation of IL-8 and CCL4 production. Clinical and Experimental Immunology, 2005, 142, 199-205.	2.6	13
70	Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. Theoretical and Applied Genetics, 2004, 108, 535-542.	3.6	38
71	Microsatellite variability and heterozygote deficiency in the arctic—alpine Alaskan wheatgrass (Elymus) Tj ET	Qq1 1.0,784 	-314 rgBT /O
72	Interspecific polymorphism at non-coding regions of chloroplast, mitochondrial DNA and rRNA IGS	1.4	22

region in Elymus species. Hereditas, 2002, 137, 119-124.