Johannes Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985552/publications.pdf

Version: 2024-02-01

4545 5891 35,057 189 81 171 citations h-index g-index papers 238 238 238 21520 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Woman with a Sword? – Weapon Grave at Suontaka VesitorninmÃÞi, Finland. European Journal of Archaeology, 2022, 25, 42-60.	0.3	11
2	Performance and automation of ancient DNA capture with RNA hyRAD probes. Molecular Ecology Resources, 2022, 22, 891-907.	2.2	11
3	Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations. Nature Communications, 2022, 13, 1195.	5.8	22
4	Emergence and intensification of dairying in the Caucasus and Eurasian steppes. Nature Ecology and Evolution, 2022, 6, 813-822.	3.4	22
5	The well-preserved Late Neolithic dolmen burial of Oberbipp, Switzerland. Construction, use, and post-depositional processes. Journal of Archaeological Science: Reports, 2022, 42, 103397.	0.2	O
6	Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 2022, 185, 1402-1413.e21.	13.5	26
7	Stone Age <i>Yersinia pestis</i> genomes shed light on the early evolution, diversity, and ecology of plague. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116722119.	3.3	31
8	Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. IScience, 2022, 25, 104244.	1.9	11
9	Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history. Nature Communications, 2022, 13, 2399.	5.8	12
10	Population Genetics and Signatures of Selection in Early Neolithic European Farmers. Molecular Biology and Evolution, 2022, 39, .	3.5	16
11	Ancient genomes from the last three millennia support multiple human dispersals into Wallacea. Nature Ecology and Evolution, 2022, 6, 1024-1034.	3.4	15
12	The source of the Black Death in fourteenth-century central Eurasia. Nature, 2022, 606, 718-724.	13.7	58
13	Grey wolf genomic history reveals a dual ancestry of dogs. Nature, 2022, 607, 313-320.	13.7	48
14	Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Communications Biology, 2021, 4, 113.	2.0	20
15	Ancient DNA analysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	133
16	Genomic insights into the formation of human populations in East Asia. Nature, 2021, 591, 413-419.	13.7	216
17	Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. Science Advances, 2021, 7, .	4.7	39
18	A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nature Ecology and Evolution, 2021, 5, 820-825.	3.4	69

#	Article	IF	CITATIONS
19	Integrating Genetic, Archaeological, and Historical Perspectives on Eastern Central Europe, 400–900ÂAD. Historical Studies on Central Europe, 2021, 1, .	0.0	2
20	Analysis of Genomic DNA from Medieval Plague Victims Suggests Long-Term Effect of <i>Yersinia pestis</i> on Human Immunity Genes. Molecular Biology and Evolution, 2021, 38, 4059-4076.	3. 5	29
21	Mass burial genomics reveals outbreak of enteric paratyphoid fever in the Late Medieval trade city Lübeck. IScience, 2021, 24, 102419.	1.9	9
22	The evolution and changing ecology of the African hominid oral microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	74
23	Human mobility at Tell Atchana (Alalakh), Hatay, Turkey during the 2nd millennium BC: Integration of isotopic and genomic evidence. PLoS ONE, 2021, 16, e0241883.	1.1	7
24	Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Scientific Reports, 2021, 11, 15005.	1.6	23
25	Dynamic changes in genomic and social structures in third millennium BCE central Europe. Science Advances, 2021, 7, .	4.7	46
26	Genome of a middle Holocene hunter-gatherer from Wallacea. Nature, 2021, 596, 543-547.	13.7	35
27	Genome-wide autosomal, mtDNA, and Y chromosome analysis of King Bela III of the Hungarian Arpad dynasty. Scientific Reports, 2021, 11, 19210.	1.6	9
28	Insights into human history from the first decade of ancient human genomics. Science, 2021, 373, 1479-1484.	6.0	41
29	The origin and legacy of the Etruscans through a 2000-year archeogenomic time transect. Science Advances, 2021, 7, eabi7673.	4.7	44
30	A 3,000-year-old, basal S. enterica lineage from Bronze Age Xinjiang suggests spread along the Proto-Silk Road. PLoS Pathogens, 2021, 17, e1009886.	2.1	7
31	Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biology, 2021, 19, 220.	1.7	14
32	Ten millennia of hepatitis B virus evolution. Science, 2021, 374, 182-188.	6.0	64
33	Ethics of DNA research on human remains: five globally applicable guidelines. Nature, 2021, 599, 41-46.	13.7	49
34	The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 2021, 598, 634-640.	13.7	142
35	The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 2021, 599, 256-261.	13.7	65
36	Optimized Bone Sampling Protocols for the Retrieval of Ancient DNA from Archaeological Remains. Journal of Visualized Experiments, 2021, , .	0.2	0

#	Article	IF	Citations
37	Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia. Science Advances, 2021, 7, eabi7038.	4.7	39
38	Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Molecular Ecology, 2020, 29, 1596-1610.	2.0	70
39	â€TB or not TB': the conundrum of pre-European contact tuberculosis in the Pacific. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190583.	1.8	6
40	Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus' evolution. BMC Biology, 2020, 18, 136.	1.7	28
41	The immunogenetic diversity of the HLA system in Mexico correlates with underlying population genetic structure. Human Immunology, 2020, 81, 461-474.	1.2	39
42	Ancient Bacterial Genomes Reveal a High Diversity of Treponema pallidum Strains in Early Modern Europe. Current Biology, 2020, 30, 3788-3803.e10.	1.8	47
43	A systematic investigation of human DNA preservation in medieval skeletons. Scientific Reports, 2020, 10, 18225.	1.6	39
44	2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biology, 2020 , 18 , 108 .	1.7	29
45	Crops vs. animals: regional differences in subsistence strategies of Swiss Neolithic farmers revealed by stable isotopes. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	12
46	A Dynamic 6,000-Year Genetic History of Eurasia's Eastern Steppe. Cell, 2020, 183, 890-904.e29.	13.5	124
47	Comparison of target enrichment strategies for ancient pathogen DNA. BioTechniques, 2020, 69, 455-459.	0.8	17
48	A Paleogenomic Reconstruction of the Deep Population History of the Andes. Cell, 2020, 181, 1131-1145.e21.	13.5	69
49	Ancient genomes from northern China suggest links between subsistence changes and human migration. Nature Communications, 2020, 11, 2700.	5.8	133
50	Origin and Health Status of First-Generation Africans from Early Colonial Mexico. Current Biology, 2020, 30, 2078-2091.e11.	1.8	34
51	Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Science Advances, 2020, 6, eaaz5344.	4.7	92
52	Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Science Advances, 2020, 6, eaaz0183.	4.7	56
53	Genomic insights into the early peopling of the Caribbean. Science, 2020, 369, 456-460.	6.0	44
54	An ancient view on host pathogen interaction across time and space. Current Opinion in Immunology, 2020, 65, 65-69.	2.4	4

#	Article	IF	CITATIONS
55	Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nature Communications, 2020, 11, 939.	5.8	96
56	Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nature Ecology and Evolution, 2020, 4, 324-333.	3.4	72
57	Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nature Communications, 2020, 11, 1915.	5.8	50
58	Paleolithic to Bronze Age Siberians Reveal Connections with First Americans and across Eurasia. Cell, 2020, 181, 1232-1245.e20.	13.5	71
59	Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell, 2020, 181, 1158-1175.e28.	13.5	86
60	Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. Scientific Reports, 2019, 9, 10700.	1.6	57
61	Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens. Annual Review of Microbiology, 2019, 73, 639-666.	2.9	36
62	Ancient Genomes Reveal Yamnaya-Related Ancestry and a Potential Source of Indo-European Speakers in Iron Age Tianshan. Current Biology, 2019, 29, 2526-2532.e4.	1.8	64
63	Ancient DNA sheds light on the genetic origins of early Iron Age Philistines. Science Advances, 2019, 5, eaax0061.	4.7	64
64	Kinship-based social inequality in Bronze Age Europe. Science, 2019, 366, 731-734.	6.0	175
65	A58â€∫Epidemic dynamics of ancient disease outbreaks. Virus Evolution, 2019, 5, .	2.2	0
66	Multiple Radiocarbon Dating of Human remains: Clarifying the Chronology and Sequences of Burials in the late Neolithic Dolmen of Oberbipp (Switzerland). Radiocarbon, 2019, 61, 1697-1709.	0.8	6
67	Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nature Communications, 2019, 10, 4470.	5.8	113
68	Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. Science Advances, 2019, 5, eaaw5873.	4.7	52
69	Ancient <i>Yersinia pestis</i> genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12363-12372.	3.3	100
70	Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature, 2019, 570, 236-240.	13.7	118
71	Who lived on the Swiss Plateau around 3300 BCE? Analyses of commingled human skeletal remains from the dolmen of Oberbipp. International Journal of Osteoarchaeology, 2019, 29, 786-796.	0.6	5
72	The genetic history of admixture across inner Eurasia. Nature Ecology and Evolution, 2019, 3, 966-976.	3.4	135

#	Article	IF	CITATIONS
73	Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nature Communications, 2019, 10, 1218.	5.8	74
74	Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula. Current Biology, 2019, 29, 1169-1177.e7.	1.8	90
75	Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Scientific Reports, 2019, 9, 4433.	1.6	60
76	Response to "Ancient DNA and its contribution to understanding the human history of the Pacific Islands―(Bedford <i>etÂal</i> . 2018). Archaeology in Oceania, 2019, 54, 57-61.	0.3	3
77	Ancient pathogen genomics as anÂemerging tool for infectious diseaseÂresearch. Nature Reviews Genetics, 2019, 20, 323-340.	7.7	195
78	Human mitochondrial DNA lineages in Iron-Age Fennoscandia suggest incipient admixture and eastern introduction of farming-related maternal ancestry. Scientific Reports, 2019, 9, 16883.	1.6	14
79	HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biology, 2019, 20, 280.	3.8	67
80	Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nature Communications, 2019, 10, 590.	5.8	113
81	The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, 2018, 555, 190-196.	13.7	503
82	The genomic history of southeastern Europe. Nature, 2018, 555, 197-203.	13.7	479
82	The genomic history of southeastern Europe. Nature, 2018, 555, 197-203. Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114.	13.7	479 241
83	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114. Language continuity despite population replacement in Remote Oceania. Nature Ecology and Evolution,	6.0	241
83	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114. Language continuity despite population replacement in Remote Oceania. Nature Ecology and Evolution, 2018, 2, 731-740.	6.0 3.4	91
83 84 85	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114. Language continuity despite population replacement in Remote Oceania. Nature Ecology and Evolution, 2018, 2, 731-740. The genetic prehistory of the Baltic Sea region. Nature Communications, 2018, 9, 442. Inferring genetic origins and phenotypic traits of George BÇr, the architect of the Dresden	6.0 3.4 5.8	24191151
83 84 85 86	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114. Language continuity despite population replacement in Remote Oceania. Nature Ecology and Evolution, 2018, 2, 731-740. The genetic prehistory of the Baltic Sea region. Nature Communications, 2018, 9, 442. Inferring genetic origins and phenotypic traits of George BĀĦr, the architect of the Dresden Frauenkirche. Scientific Reports, 2018, 8, 2115. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nature	6.0 3.4 5.8	2419115111
83 84 85 86	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114. Language continuity despite population replacement in Remote Oceania. Nature Ecology and Evolution, 2018, 2, 731-740. The genetic prehistory of the Baltic Sea region. Nature Communications, 2018, 9, 442. Inferring genetic origins and phenotypic traits of George BĀĦr, the architect of the Dresden Frauenkirche. Scientific Reports, 2018, 8, 2115. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nature Ecology and Evolution, 2018, 2, 520-528. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations.	6.0 3.4 5.8 1.6	2419115111218

#	Article	IF	Citations
91	Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nature Communications, 2018, 9, 5018.	5.8	86
92	Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11248-E11255.	3.3	135
93	Reconstructing the Deep Population History of Central and South America. Cell, 2018, 175, 1185-1197.e22.	13.5	259
94	Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Scientific Reports, 2018, 8, 14075.	1.6	48
95	Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium <i>Treponema pallidum</i> subsp. <i>pertenue</i> Emerging Microbes and Infections, 2018, 7, 1-4.	3.0	41
96	Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard. Science Advances, 2018, 4, eaao1262.	4.7	28
97	Understanding 6th-century barbarian social organization and migration through paleogenomics. Nature Communications, 2018, 9, 3547.	5.8	111
98	Reconciling material cultures in archaeology with genetic data: The nomenclature of clusters emerging from archaeogenomic analysis. Scientific Reports, 2018, 8, 13003.	1.6	69
99	Differential preservation of endogenous human and microbial DNA in dental calculus and dentin. Scientific Reports, 2018, 8, 9822.	1.6	88
100	Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Neglected Tropical Diseases, 2018, 12, e0006447.	1.3	58
101	Genetic diversity of the HLA system in human populations from the Sierra (Andean), Oriente (Amazonian) and Costa (Coastal) regions of Ecuador. Human Immunology, 2018, 79, 639-650.	1.2	8
102	Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nature Communications, 2018, 9, 2234.	5.8	123
103	Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathogens, 2018, 14, e1006997.	2.1	98
104	The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genetics, 2018, 14, e1007155.	1.5	116
105	Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci. Scientific Reports, 2017, 7, 41195.	1.6	12
106	A Robust Framework for Microbial Archaeology. Annual Review of Genomics and Human Genetics, 2017, 18, 321-356.	2.5	144
107	Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nature Microbiology, 2017, 2, 16245.	5.9	138
108	Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nature Communications, 2017, 8, 15694.	5.8	131

#	Article	IF	Citations
109	Reconstructing Prehistoric African Population Structure. Cell, 2017, 171, 59-71.e21.	13.5	308
110	Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10083-10088.	3.3	136
111	Genetic origins of the Minoans and Mycenaeans. Nature, 2017, 548, 214-218.	13.7	203
112	Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 2017, 357, 512-515.	6.0	169
113	The maternal genetic make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age. Scientific Reports, 2017, 7, 15644.	1.6	44
114	The Stone Age Plague and Its Persistence in Eurasia. Current Biology, 2017, 27, 3683-3691.e8.	1.8	125
115	Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nature Communications, 2017, 8, 16046.	5.8	211
116	Mining Metagenomic Data Sets for Ancient DNA: Recommended Protocols for Authentication. Trends in Genetics, 2017, 33, 508-520.	2.9	90
117	Central European Woolly Mammoth Population Dynamics: Insights from Late Pleistocene Mitochondrial Genomes. Scientific Reports, 2017, 7, 17714.	1.6	30
118	Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets. PLoS ONE, 2017, 12, e0182565.	1.1	53
119	Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. ELife, 2016, 5, e12994.	2.8	139
120	Effect of X-ray irradiation on ancient DNA in sub-fossil bones – Guidelines for safe X-ray imaging. Scientific Reports, 2016, 6, 32969.	1.6	74
121	The genetic history of Ice Age Europe. Nature, 2016, 534, 200-205.	13.7	729
122	Genetic Time Travel. Genetics, 2016, 203, 9-12.	1.2	23
123	Genomic insights into the peopling of the Southwest Pacific. Nature, 2016, 538, 510-513.	13.7	262
124	Tools for opening new chapters in the book of Treponema pallidum evolutionary history. Clinical Microbiology and Infection, 2016, 22, 916-921.	2.8	26
125	A High-Coverage <i>Yersinia pestis</i> Genome from a Sixth-Century Justinianic Plague Victim. Molecular Biology and Evolution, 2016, 33, 2911-2923.	3.5	109
126	Genomic insights into the origin of farming in the ancient Near East. Nature, 2016, 536, 419-424.	13.7	733

#	Article	IF	Citations
127	Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics, 2016, 48, 1089-1093.	9.4	122
128	Neandertal cannibalism and Neandertal bones used as tools in Northern Europe. Scientific Reports, 2016, 6, 29005.	1.6	70
129	Early cave art and ancient DNA record the origin of European bison. Nature Communications, 2016, 7, 13158.	5.8	81
130	Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. Royal Society Open Science, 2016, 3, 160239.	1.1	108
131	Historical Y.Âpestis Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics. Cell Host and Microbe, 2016, 19, 874-881.	5.1	142
132	Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Current Biology, 2016, 26, 557-561.	1.8	17
133	EAGER: efficient ancient genome reconstruction. Genome Biology, 2016, 17, 60.	3.8	305
134	Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Current Biology, 2016, 26, 827-833.	1.8	277
135	The 5300-year-old <i>Helicobacter pylori</i> genome of the Iceman. Science, 2016, 351, 162-165.	6.0	200
136	A Molecular Approach to the Sexing of the Triple Burial at the Upper Paleolithic Site of DolnÃ-VÄ>stonice. PLoS ONE, 2016, 11, e0163019.	1.1	92
137	Mitochondrial Genomes of Giant Deers Suggest their Late Survival in Central Europe. Scientific Reports, 2015, 5, 10853.	1.6	28
138	Rewriting the Central European Early Bronze Age Chronology: Evidence from Large-Scale Radiocarbon Dating. PLoS ONE, 2015, 10, e0139705.	1.1	34
139	Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 2015, 522, 207-211.	13.7	1,435
140	Insight into the evolution and origin of leprosy bacilli from the genome sequence of <i>Mycobacterium lepromatosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4459-4464.	3.3	134
141	Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 2015, 528, 499-503.	13.7	1,160
142	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	4.2	469
143	Parallel detection of ancient pathogens via array-based DNA capture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130375.	1.8	38
144	Screening ancient tuberculosis with qPCR: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130622.	1.8	21

#	Article	IF	CITATIONS
145	Mining Herbaria for Plant Pathogen Genomes: Back to the Future. PLoS Pathogens, 2014, 10, e1004028.	2.1	72
146	Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2229-2234.	3.3	349
147	Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 2014, 514, 494-497.	13.7	506
148	Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014, 513, 409-413.	13.7	1,179
149	Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics, 2014, 15, 270.	1.2	60
150	Genomic Correlates of Atherosclerosis in Ancient Humans. Global Heart, 2014, 9, 203.	0.9	20
151	Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs. Science, 2013, 342, 871-874.	6.0	438
152	A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology, 2013, 23, 553-559.	1.8	540
153	Genome-Wide Comparison of Medieval and Modern <i>Mycobacterium leprae</i> . Science, 2013, 341, 179-183.	6.0	313
154	Ancient human migrations. , 2013, , 45-64.		O
154 155	Ancient human migrations., 2013, , 45-64. Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554.	2.7	204
	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology,	2.7	
155	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife,		204
155 156	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLoS ONE,	2.8	339
155 156 157	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLoS ONE, 2012, 7, e34131.	2.8	204 339 428
155 156 157	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLoS ONE, 2012, 7, e34131. Complete Mitochondrial Genomes Reveal Neolithic Expansion into Europe. PLoS ONE, 2012, 7, e32473.	2.8 1.1 1.1	204 339 428 61
155 156 157 158	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLoS ONE, 2012, 7, e34131. Complete Mitochondrial Genomes Reveal Neolithic Expansion into Europe. PLoS ONE, 2012, 7, e32473. Yersinia pestis: New Evidence for an Old Infection. PLoS ONE, 2012, 7, e49803. Learning about human population history from ancient and modern genomes. Nature Reviews	2.8 1.1 1.1 1.1	2043394286133

#	Article	IF	CITATIONS
163	Virus Progeny of Murine Cytomegalovirus Bacterial Artificial Chromosome pSM3fr Show Reduced Growth in Salivary Glands due to a Fixed Mutation of MCK-2. Journal of Virology, 2011, 85, 10346-10353.	1.5	127
164	Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture. Science, 2010, 328, 723-725.	6.0	255
165	A Draft Sequence of the Neandertal Genome. Science, 2010, 328, 710-722.	6.0	3,588
166	A Complete mtDNA Genome of an Early Modern Human from Kostenki, Russia. Current Biology, 2010, 20, 231-236.	1.8	252
167	The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 2010, 464, 894-897.	13.7	659
168	Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 2010, 468, 1053-1060.	13.7	1,537
169	Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Research, 2010, 38, e87-e87.	6.5	362
170	Linkage Disequilibrium Extends Across Putative Selected Sites in FOXP2. Molecular Biology and Evolution, 2009, 26, 2181-2184.	3.5	51
171	The Neandertal genome and ancient DNA authenticity. EMBO Journal, 2009, 28, 2494-2502.	3.5	170
172	Targeted Retrieval and Analysis of Five Neandertal mtDNA Genomes. Science, 2009, 325, 318-321.	6.0	456
173	Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources. Journal of Visualized Experiments, 2009, , 1573.	0.2	22
174	Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evolutionary Biology, 2008, 8, 220.	3.2	261
175	Genetic characterization of the ABO blood group in Neandertals. BMC Evolutionary Biology, 2008, 8, 342.	3.2	53
176	A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing. Cell, 2008, 134, 416-426.	13.5	503
177	From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Research, 2008, 36, e5-e5.	6.5	105
178	Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14616-14621.	3.3	799
179	Neanderthals in central Asia and Siberia. Nature, 2007, 449, 902-904.	13.7	293
180	The Derived FOXP2 Variant of Modern Humans Was Shared with Neandertals. Current Biology, 2007, 17, 1908-1912.	1.8	487

#	Article	IF	Citations
181	Sequencing and Analysis of Neanderthal Genomic DNA. Science, 2006, 314, 1113-1118.	6.0	547
182	Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 2006, 439, 724-727.	13.7	194
183	Multiplex amplification of ancient DNA. Nature Protocols, 2006, 1, 720-728.	5.5	78
184	Analysis of one million base pairs of Neanderthal DNA. Nature, 2006, 444, 330-336.	13.7	671
185	Mitochondrial DNA of an Iberian Neandertal suggests a population affinity with other European Neandertals. Current Biology, 2006, 16, R629-R630.	1.8	68
186	Genomic Sequencing of Pleistocene Cave Bears. Science, 2005, 309, 597-599.	6.0	221
187	Functional analysis of human and chimpanzee promoters. Genome Biology, 2005, 6, R57.	13.9	19
188	Genetic Analyses from Ancient DNA. Annual Review of Genetics, 2004, 38, 645-679.	3.2	1,084
189	Patterns of Transformation from the Final Neolithic to the Early Bronze Age:. , 0, , 241-261.		4