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189 The structure and function of RAD6 and RAD18 DNA repair genes of Saccharomyces cerevisiae. Genome,
1989, 31, 597-600. 2.0 25

190
TheSaccharomyces cerevisiae RAD18gene encodes a protein that contains potential zinc finger domains
for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Research, 1988, 16,
7119-7131.

14.5 151

191 Alkylation mutagenesis in Saccharomyces cerevisiae: lack of evidence for an adaptive response.
Current Genetics, 1986, 10, 647-655. 1.7 23

192
The nucleotide sequence of theRAD3gene ofSaccharomyces cerevisiae: a potential adenine nucleotide
binding amino acid sequence and a nonessential acidic carboxyl terminal region. Nucleic Acids
Research, 1985, 13, 2357-2372.

14.5 96

193 Molecular cloning of the RAD10 gene of Saccharomyces cerevisiae. Gene, 1985, 34, 55-61. 2.2 31

194
DIFFERENT EFFECTS OF RAD GENES OF SACCHAROMYCES CEREVISIAE ON INCISIONS OF INTERSTRAND
CROSSLINKS AND MONOADDUCTS IN DNA INDUCED BY PSORALEN PLUS NEAR UV LIGHT TREATMENT.
Photochemistry and Photobiology, 1984, 39, 349-352.

2.5 18

195 Isolation and characterization of the RAD2 gene of Saccharomyces cerevisiae. Gene, 1984, 30, 121-128. 2.2 42

196 Ultraviolet light induced mutagenesis of mitochondrial genes in the rad6, rev3 and cdc8 mutants of
Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1983, 189, 513-515. 2.4 7

197 Molecular cloning and characterization of the RAD1 gene of Saccharomyces cerevisiae. Gene, 1983, 26,
119-126. 2.2 50

198 Role of DNA repair in ethyl methanesulfonate-induced mutagenesis in Saccharomyces cerevisiae.
Carcinogenesis, 1982, 3, 439-444. 2.8 16



13

Louise Prakash

# Article IF Citations

199 Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of
Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1982, 188, 235-239. 2.4 78

200 Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: Evidence for multiple
functions of the RAD6 gene. Molecular Genetics and Genomics, 1981, 184, 410-415. 2.4 82

201 Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18,
rev3 and rad52 mutations. Molecular Genetics and Genomics, 1981, 184, 471-478. 2.4 269

202 Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in
Saccharomyces cerevisiae. Current Genetics, 1981, 4, 223-232. 1.7 5

203 Effects of the rad52 gene on sister chromatid recombination in Saccharomyces cerevisiae. Current
Genetics, 1981, 3, 247-250. 1.7 56

204 Purification and characterization of a uracil-DNA glycosylase from the yeast, Saccharomyces
cerevisiae. Nucleic Acids Research, 1981, 9, 5797-5810. 14.5 35

205 Genetic Analysis of Error-Prone Repair Systems in Saccharomyces cerevisiae. , 1980, 15, 141-158. 17

206 EFFECTS OF THE <i>RAD52</i> GENE ON RECOMBINATION IN <i>SACCHAROMYCES CEREVISIAE</i>. Genetics,
1980, 94, 31-50. 2.9 257

207 Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Molecular
Genetics and Genomics, 1979, 172, 249-258. 2.4 38

208 Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14
and MMS19. Molecular Genetics and Genomics, 1979, 176, 351-359. 2.4 75

209 PATHWAYS OF DNA REPAIR IN YEAST. , 1978, , 413-416. 5

210 Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces
cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1977, 45, 13-20. 1.0 83

211 Defective thymine dimer excision in radiation-sensitive mutants rad10 and rad16 of Saccharomyces
cerevisiae. Molecular Genetics and Genomics, 1977, 152, 125-128. 2.4 56

212 ISOLATION AND CHARACTERIZATION OF MMS-SENSITIVE MUTANTS OF <i>SACCHAROMYCES CEREVISIAE</i>.
Genetics, 1977, 86, 33-55. 2.9 230

213 INCREASED SPONTANEOUS MITOTIC SEGREGATION IN MMS-SENSITIVE MUTANTS OF <i>SACCHAROMYCES
CEREVISIAE</i>. Genetics, 1977, 87, 229-236. 2.9 50

214
The relation between repair of DNA and radiation and chemical mutagenesis in Saccharomyces
cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1976, 41,
241-248.

1.0 32

215 EFFECT OF GENES CONTROLLING RADIATION SENSITIVITY ON CHEMICALLY INDUCED MUTATIONS IN
<i>SACCHAROMYCES CEREVISIAE</i>. Genetics, 1976, 83, 285-301. 2.9 103

216 Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of
ultraviolet light. Journal of Molecular Biology, 1975, 98, 781-795. 4.2 165



14

Louise Prakash

# Article IF Citations

217 The Effect of Genes Controlling Radiation Sensitivity on Chemical Mutagenesis in Yeast. , 1975, 5A,
393-395. 4

218 Specific induction of transitions and transversions of G Â· C base pairs by 4-nitroquinoline-1-oxide in
iso-1-cytochrome c mutants of yeast. Journal of Molecular Biology, 1974, 85, 51-65. 4.2 57

219 DIFFERENTIATION BETWEEN AMBER AND OCHRE MUTANTS OF YEAST BY REVERSION WITH
4-NITROQUINOLINE-1-OXIDE. Genetics, 1974, 77, 245-254. 2.9 16

220 LACK OF CHEMICALLY INDUCED MUTATION IN REPAIR-DEFICIENT MUTANTS OF YEAST. Genetics, 1974, 78,
1101-1118. 2.9 156

221 Mutagenic specificity: Reversion of iso-1-cytochrome c mutants of yeast. Journal of Molecular
Biology, 1973, 79, 65-82. 4.2 176

222 Repair of Alkylation Damage: Stability of Methyl Groups in <i>Bacillus subtilis</i> Treated with Methyl
Methanesulfonate. Journal of Bacteriology, 1970, 102, 760-766. 2.2 78


