List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985044/publications.pdf Version: 2024-02-01

IONAS DEDSSON

#	Article	IF	CITATIONS
1	Structure–Function Correlates of Cognitive Decline in Aging. Cerebral Cortex, 2006, 16, 907-915.	2.9	404
2	Age Differences in Deactivation: A Link to Cognitive Control?. Journal of Cognitive Neuroscience, 2007, 19, 1021-1032.	2.3	294
3	Longitudinal evidence for diminished frontal cortex function in aging. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22682-22686.	7.1	241
4	Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia, 2003, 41, 371-377.	1.6	215
5	Longitudinal Structure-Function Correlates in Elderly Reveal MTL Dysfunction with Cognitive Decline. Cerebral Cortex, 2012, 22, 2297-2304.	2.9	138
6	Reduced functional brain activity response in cognitively intact apolipoprotein E ε4 carriers. Brain, 2006, 129, 1240-1248.	7.6	133
7	Selection requirements during verb generation: differential recruitment in older and younger adults. NeuroImage, 2004, 23, 1382-1390.	4.2	129
8	Reduced hippocampal volume in non-demented carriers of the apolipoprotein E ɛ4: Relation to chronological age and recognition memory. Neuroscience Letters, 2006, 396, 23-27.	2.1	112
9	Grammar predicts procedural learning and consolidation deficits in children with Specific Language Impairment. Research in Developmental Disabilities, 2011, 32, 2362-2375.	2.2	111
10	Brain Characteristics of Individuals Resisting Age-Related Cognitive Decline over Two Decades. Journal of Neuroscience, 2013, 33, 8668-8677.	3.6	105
11	Longitudinal assessment of default-mode brain function in aging. Neurobiology of Aging, 2014, 35, 2107-2117.	3.1	94
12	Cognitive fatigue of executive processes: Interaction between interference resolution tasks. Neuropsychologia, 2007, 45, 1571-1579.	1.6	91
13	Local brain atrophy accounts for functional activity differences in normal aging. Neurobiology of Aging, 2012, 33, 623.e1-623.e13.	3.1	83
14	Mapping interference resolution across task domains: A shared control process in left inferior frontal gyrus. Brain Research, 2009, 1256, 92-100.	2.2	81
15	Age-related and Genetic Modulation of Frontal Cortex Efficiency. Journal of Cognitive Neuroscience, 2014, 26, 746-754.	2.3	70
16	Sex differences in volume and structural covariance of the anterior and posterior hippocampus. NeuroImage, 2014, 99, 215-225.	4.2	68
17	Altered brain activity in healthy seniors: what does it mean?. Progress in Brain Research, 2006, 157, 45-385.	1.4	64
18	Remembering our origin: Gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behavioural Brain Research, 2013, 256, 219-228.	2.2	64

#	Article	IF	CITATIONS
19	Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus. NeuroImage, 2012, 63, 1552-1560.	4.2	52
20	Impaired implicit sequence learning in children with developmental dyslexia. Research in Developmental Disabilities, 2013, 34, 3924-3935.	2.2	51
21	Preserved hippocampus activation in normal aging as revealed by fMRI. Hippocampus, 2011, 21, 753-766.	1.9	50
22	Imaging Fatigue of Interference Control Reveals the Neural Basis of Executive Resource Depletion. Journal of Cognitive Neuroscience, 2013, 25, 338-351.	2.3	46
23	The memory-enhancing effects of Ginseng and Ginkgo biloba in healthy volunteers. Psychopharmacology, 2004, 172, 430-434.	3.1	45
24	Conjunction analysis of cortical activations common to encoding and retrieval. Microscopy Research and Technique, 2000, 51, 39-44.	2.2	40
25	Predicting episodic and spatial memory performance from hippocampal restingâ€state functional connectivity: Evidence for an anterior–posterior division of function. Hippocampus, 2018, 28, 53-66.	1.9	35
26	Higher Striatal Iron Concentration is Linked to Frontostriatal Underactivation and Poorer Memory in Normal Aging. Cerebral Cortex, 2017, 27, 3427-3436.	2.9	33
27	Genetics and Functional Imaging: Effects of APOE, BDNF, COMT, and KIBRA in Aging. Neuropsychology Review, 2015, 25, 47-62.	4.9	29
28	Age-related alterations in functional connectivity patterns during working memory encoding of emotional items. Neuropsychologia, 2017, 94, 1-12.	1.6	29
29	Structural wholeâ€brain covariance of the anterior and posterior hippocampus: Associations with age and memory. Hippocampus, 2018, 28, 151-163.	1.9	27
30	Hippocampal hemispheric and long-axis differentiation of stimulus content during episodic memory encoding and retrieval: An activation likelihood estimation meta-analysis. Hippocampus, 2015, 25, 1614-1631.	1.9	25
31	Influences of a DRD2 polymorphism on updating of longâ€ŧerm memory representations and caudate BOLD activity: Magnification in aging. Human Brain Mapping, 2015, 36, 1325-1334.	3.6	25
32	Additive genetic effect of APOE and BDNF on hippocampus activity. NeuroImage, 2014, 89, 306-313.	4.2	24
33	Brain systems underlying attentional control and emotional distraction during working memory encoding. Neurolmage, 2014, 87, 276-286.	4.2	22
34	Elevated neuroinflammation contributes to the deleterious impact of iron overload on brain function in aging. Neurolmage, 2021, 230, 117792.	4.2	20
35	Differential Effects of Encoding Instructions on Brain Activity Patterns of Item and Associative Memory. Journal of Cognitive Neuroscience, 2017, 29, 545-559.	2.3	16
36	Age differences in brain systems supporting transient and sustained processes involved in prospective memory and working memory. NeuroImage, 2016, 125, 745-755.	4.2	15

#	Article	IF	CITATIONS
37	Amygdala functional network during recognition of own-age vs. other-age faces in younger and older adults. Neuropsychologia, 2019, 129, 10-20.	1.6	15
38	Medial temporal lobe resection attenuates superior temporal sulcus response to faces. Neuropsychologia, 2014, 61, 291-298.	1.6	14
39	Midlife memory ability accounts for brain activity differences in healthy aging. Neurobiology of Aging, 2014, 35, 2495-2503.	3.1	14
40	Apolipoprotein E ϵ4 is positively related to spatial performance but unrelated to hippocampal volume in healthy young adults. Behavioural Brain Research, 2016, 299, 11-18.	2.2	14
41	Longitudinal, bidirectional relationships of insomnia symptoms and musculoskeletal pain across adolescence: the mediating role of mood. Pain, 2022, 163, 287-298.	4.2	13
42	Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses to an Arithmetic Stress Task in Healthy Subjects: A Randomised Clinical Trial and Proof-of-Concept Study. Nutrients, 2022, 14, 1329.	4.1	13
43	Age-differences in the temporal properties of proactive interference in working memory Psychology and Aging, 2017, 32, 722-731.	1.6	12
44	Interference Control in Working Memory Is Associated with Ventrolateral Prefrontal Cortex Volume. Journal of Cognitive Neuroscience, 2019, 31, 1491-1505.	2.3	11
45	Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results. Frontiers in Aging Neuroscience, 2016, 8, 203.	3.4	10
46	Age differences in the neural response to emotional distraction during working memory encoding. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 869-883.	2.0	10
47	Phosphodiesterase 10A levels are related to striatal function in schizophrenia: a combined positron emission tomography and functional magnetic resonance imaging study. European Archives of Psychiatry and Clinical Neuroscience, 2020, 270, 451-459.	3.2	10
48	Response rate and subjective memory after electroconvulsive therapy in depressive disorders with psychiatric comorbidity. Journal of Affective Disorders, 2021, 292, 276-283.	4.1	10
49	Influence of the DRD2/ANKK1 Taq1A polymorphism on caudate volume in older adults without dementia. Brain Structure and Function, 2018, 223, 2653-2662.	2.3	9
50	White-Matter Integrity and Working Memory: Links to Aging and Dopamine-Related Genes. ENeuro, 2022, 9, ENEURO.0413-21.2022.	1.9	9
51	Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses Toward an Emotional Task in Healthy Subjects: A Randomized Clinical Trial. Frontiers in Nutrition, 2022, 9, 827182.	3.7	9
52	Superior cognitive goal maintenance in carriers of genetic markers linked to reduced striatal D2 receptor density (C957T and DRD2/ANKK1-TaqIA). PLoS ONE, 2018, 13, e0201837.	2.5	8
53	The relationship of age and DRD2 polymorphisms to frontostriatal brain activity and working memory performance. Neurobiology of Aging, 2019, 84, 189-199.	3.1	8
54	Behavioral facilitation and increased brain responses from a high interference working memory context. Scientific Reports, 2018, 8, 15308.	3.3	7

#	Article	IF	CITATIONS
55	Sleep phase and pre-sleep arousal predicted co-developmental trajectories of pain and insomnia within adolescence. Scientific Reports, 2022, 12, 4480.	3.3	7
56	Proactive interference in working memory is related to adult age and cognitive factors: cross-sectional and longitudinal evidence from the Betula study. Aging, Neuropsychology, and Cognition, 2021, 28, 108-127.	1.3	6
57	The association between control of interference and white-matter integrity: A cross-sectional and longitudinal investigation. Neurobiology of Aging, 2022, 114, 49-60.	3.1	6
58	A positive influence of basal ganglia iron concentration on implicit sequence learning. Brain Structure and Function, 2020, 225, 735-749.	2.3	5
59	Neural correlates of sequence learning in children with developmental dyslexia. Human Brain Mapping, 2022, , .	3.6	5
60	Monitoring Multiple Deadlines Relies on Spatial Processing in Posterior Parietal Cortex. Journal of Cognitive Neuroscience, 2019, 31, 1468-1483.	2.3	4
61	Automatic and effortful control of interference in working memory can be distinguished by unique behavioral and functional brain representations. NeuroImage, 2022, 253, 119098.	4.2	3
62	The Causal Role of Right Frontopolar Cortex in Moral Judgment, Negative Emotion Induction, and Executive Control. Basic and Clinical Neuroscience, 2019, 10, 37-48.	0.6	2
63	Neural correlates of affective empathy in aging: A multimodal imaging and multivariate approach. Aging, Neuropsychology, and Cognition, 2022, 29, 577-598.	1.3	2
64	Hippocampal and motor regions contribute to memory benefits after enacted encoding: cross-sectional and longitudinal evidence. Cerebral Cortex, 2023, 33, 3080-3097.	2.9	1
65	Herbal extracts and memory enhancement: response to Scholey et al Psychopharmacology, 2005, 179, 708-709.	3.1	Ο