Kunyan Sui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1984897/publications.pdf

Version: 2024-02-01

		159585	118850
63	4,182	30	62
papers	citations	h-index	g-index
63	63	63	4549
all docs	docs citations	times ranked	
an docs	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Advanced Composites and Hybrid Materials, 2022, 5, 450-460.	21.1	28
2	Precisely Defining Local Gradients of Stimuliâ€Responsive Hydrogels for Complex 2Dâ€ŧoâ€4D Shape Evolutions. Small, 2022, 18, e2104440.	10.0	12
3	Self-Powered Multifunction Ionic Skins Based on Gradient Polyelectrolyte Hydrogels. ACS Nano, 2022, 16, 4714-4725.	14.6	55
4	Power Generation Via Sliding Ionic Droplets on Nanolayered MXene Films. ACS Applied Nano Materials, 2022, 5, 4597-4602.	5.0	5
5	Reliable and Low Temperature Actuation of Water and Oil Slugs in Janus Photothermal Slippery Tube. ACS Applied Materials & Diterfaces, 2022, 14, 17968-17974.	8.0	14
6	Strong and tough self-wrinkling polyelectrolyte hydrogels constructed ⟨i⟩via⟨ i⟩ a diffusion–complexation strategy. Soft Matter, 2022, 18, 3748-3755.	2.7	3
7	Interfacial and build-in electric fields rooting in gradient polyelectrolyte hydrogel boosted heavy metal removal. Chemical Engineering Journal, 2022, 444, 136541.	12.7	14
8	Electric field modulated water permeation through laminar Ti3C2Tx MXene membrane. Water Research, 2022, 219, 118598.	11.3	26
9	Ionic diode-based self-powered ionic skins with multiple sensory capabilities. Materials Today Physics, 2022, 26, 100744.	6.0	5
10	Bioinspired synthesis of fiber-shaped silk fibroin-ferric oxide nanohybrid for superior elimination of antimonite. Journal of Hazardous Materials, 2021, 403, 123909.	12.4	11
11	Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. Journal of Hazardous Materials, 2021, 410, 124633.	12.4	31
12	Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Advanced Composites and Hybrid Materials, 2021, 4, 173-185.	21.1	356
13	Negative permittivity behavior in Ti3AlC2-polyimide composites and the regulation mechanism. Journal of Materials Science: Materials in Electronics, 2021, 32, 10388-10397.	2.2	31
14	Iron/epoxy random metamaterials with adjustable epsilon-near-zero and epsilon-negative property. Journal of Materials Science: Materials in Electronics, 2021, 32, 15995-16007.	2.2	19
15	Marine polysaccharide-based composite hydrogels containing fucoidan: Preparation, physicochemical characterization, and biocompatible evaluation. International Journal of Biological Macromolecules, 2021, 183, 1978-1986.	7. 5	47
16	Bioâ€Multifunctional Hydrogel Patches for Repairing Fullâ€Thickness Abdominal Wall Defects. Advanced Functional Materials, 2021, 31, 2105614.	14.9	57
17	Antiâ€6welling Gradient Polyelectrolyte Hydrogel Membranes as Highâ€Performance Osmotic Energy Generators. Angewandte Chemie, 2021, 133, 20456-20462.	2.0	52
18	Antiâ€Swelling Gradient Polyelectrolyte Hydrogel Membranes as Highâ€Performance Osmotic Energy Generators. Angewandte Chemie - International Edition, 2021, 60, 20294-20300.	13.8	73

#	Article	IF	Citations
19	Progress in antimony capturing by superior materials: Mechanisms, properties and perspectives. Chemical Engineering Journal, 2021, 419, 130013.	12.7	21
20	High performance dual strain-temperature sensor based on alginate nanofibril/graphene oxide/polyacrylamide nanocomposite hydrogel. Composites Communications, 2021, 27, 100837.	6.3	25
21	Preparation of triamcinolone acetonide-loaded chitosan/fucoidan hydrogel and its potential application as an oral mucosa patch. Carbohydrate Polymers, 2021, 272, 118493.	10.2	65
22	Building nano-thin shells for all-polymer hollow multishelled spheres: Rigidity and reaction-shrinkage of composite network. Composites Communications, 2021, 28, 100920.	6.3	1
23	Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): Synergistic effect and mechanism. Chemical Engineering Journal, 2020, 382, 122999.	12.7	72
24	Synthesis of citric acid modified βâ€eyclodextrin/activated carbon hybrid composite and their adsorption properties toward methylene blue. Journal of Applied Polymer Science, 2020, 137, 48315.	2.6	13
25	Affinity Laminated Chromatography Membrane Builtâ€in Electrodes for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1903233.	19.5	14
26	Nature-Inspired Sequential Shape Transformation of Energy-Patterned Hydrogel Sheets. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4878-4886.	8.0	16
27	Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. Journal of Materials Chemistry C, 2020, 8, 3029-3039.	5.5	169
28	Electrospinning of biocompatible alginate-based nanofiber membranes via tailoring chain flexibility. Carbohydrate Polymers, 2020, 230, 115665.	10.2	37
29	Precisely Controlling the Output Force of Hydrogel Actuator Based on Thermodynamic Nonequilibrium Temporary Deformation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49042-49049.	8.0	10
30	Colorâ€Tunable, Excitationâ€Dependent, and Timeâ€Dependent Afterglows from Pure Organic Amorphous Polymers. Advanced Materials, 2020, 32, e2004768.	21.0	181
31	Accurate Control of All-Polymer Hollow Multishelled Spheres by One-Step Reaction–Diffusion. Chemistry of Materials, 2020, 32, 8442-8449.	6.7	13
32	Homologous cancerous cell membrane modulated multifunctional nanoshuttles: Targeting specificity and improved tumor theranostics. Composites Communications, 2020, 20, 100342.	6.3	13
33	Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. Carbohydrate Polymers, 2020, 241, 116344.	10.2	23
34	Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angewandte Chemie, 2019, 131, 12797-12803.	2.0	30
35	Seaweedâ€Derived Electrospun Nanofibrous Membranes for Ultrahigh Protein Adsorption. Advanced Functional Materials, 2019, 29, 1905610.	14.9	36
36	Preparation of improved gluten material and its adsorption behavior for congo red from aqueous solution. Journal of Colloid and Interface Science, 2019, 556, 249-257.	9.4	28

#	Article	IF	CITATIONS
37	Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors. Carbohydrate Polymers, 2019, 211, 322-328.	10.2	90
38	Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Applied Materials & Sensors. ACS ACS Applied Materials & Sensors. ACS	8.0	264
39	Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angewandte Chemie - International Edition, 2019, 58, 12667-12673.	13.8	154
40	Development of a magnetic core-shell Fe3O4@TA@UiO-66 microsphere for removal of arsenic(III) and antimony(III) from aqueous solution. Journal of Hazardous Materials, 2019, 378, 120721.	12.4	108
41	Direct Current-Powered High-Performance Ionic Hydrogel Strain Sensor Based on Electrochemical Redox Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24289-24297.	8.0	21
42	Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Science Advances, 2019, 5, eaav7174.	10.3	184
43	Ultrafast Fabrication of Gradient Nanoporous Allâ€Polysaccharide Films as Strong, Superfast, and Multiresponsive Actuators. Advanced Functional Materials, 2019, 29, 1807692.	14.9	106
44	Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Materials Horizons, 2019, 6, 326-333.	12.2	327
45	Synchronous enhancement and stabilization of graphene oxide liquid crystals: Inductive effect of sodium alginates in different concentration zones. Polymer, 2019, 160, 107-114.	3 . 8	19
46	Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Composites Part B: Engineering, 2019, 162, 671-677.	12.0	117
47	Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydrate Polymers, 2019, 205, 125-134.	10.2	136
48	Preparation of periodic copolymers by living anionic polymerization mechanism assisted with a versatile programmed monomer addition mode. Polymer, 2018, 137, 364-369.	3.8	12
49	Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate. Biomacromolecules, 2018, 19, 2014-2022.	5.4	248
50	Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of Ï∈-Ï€ interactions and dipole-dipole interactions. Carbon, 2017, 114, 441-448.	10.3	179
51	Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chemical Engineering Journal, 2017, 316, 623-630.	12.7	205
52	Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry. Carbohydrate Polymers, 2017, 169, 206-212.	10.2	16
53	Reprogrammable ultra-fast shape-transformation of macroporous composite hydrogel sheets. Journal of Materials Chemistry B, 2017, 5, 2883-2887.	5 . 8	23
54	Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Composites Science and Technology, 2017, 140, 99-105.	7.8	121

#	Article	IF	CITATIONS
55	Functionalized alginate with liquid-like behaviors and its application in wet-spinning. Carbohydrate Polymers, 2017, 174, 933-940.	10.2	31
56	Grafting of multi-sensitive PDMAEMA brushes onto carbon nanotubes by ATNRC: tunable thickening/thinning and self-assembly behaviors in aqueous solutions. RSC Advances, 2016, 6, 92305-92315.	3.6	6
57	Synthesis and characterization of crystalline graft polymer poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Science Part A, 2014, 52, 2239-2247.	OTf 50 663 2.3	7 Td (oxide) 7
58	Synthesis, Rapid Responsive Thickening, and Self-Assembly of Brush Copolymer Poly(ethylene) Tj ETQq0 0 0 rgBT 2012, 28, 153-160.	/Overlock 3.5	10 Tf 50 62 36
59	Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydrate Polymers, 2012, 90, 399-406.	10.2	118
60	Synthesis of Amphiphilic Poly(ethylene oxideâ€ <i>co</i> â€glycidol)â€ <i>graft</i> â€polyacrylonitrile Brush Copolymers and their Selfâ€assembly in Aqueous Media. Macromolecular Chemistry and Physics, 2012, 213, 1717-1724.	2.2	3
61	Dualâ€responsive supramolecular inclusion complexes of block copolymer poly(ethylene) Tj ETQq1 1 0.784314 rg Science Part A, 2010, 48, 2143-2153.	gBT /Overl	ock 10 Tf 50 24
62	Injectable supramolecular hybrid hydrogels formed by MWNTâ€ <i>grafted</i> â€poly(ethylene glycol) and αâ€cyclodextrin. Journal of Polymer Science Part A, 2010, 48, 3145-3151.	2.3	19
63	Construction of 3D shapeâ€changing hydrogels via lightâ€modulated internal stress fields. Energy and Environmental Materials, 0, , .	12.8	2