List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1984497/publications.pdf Version: 2024-02-01



Υμνι Ηλιτ Ν.ς.

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@Cu-MOF-74 thin film. ChemPhysMater, 2023, 2, 126-133.                                                                                 | 2.8  | 4         |
| 2  | Advancement of Bismuthâ€Based Materials for Electrocatalytic and Photo(electro)catalytic Ammonia<br>Synthesis. Advanced Functional Materials, 2022, 32, 2106713.                                                              | 14.9 | 44        |
| 3  | Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation. Materials Advances, 2022, 3, 2200-2212.                                                                                  | 5.4  | 15        |
| 4  | Facet-dependent spatial charge separation with rational cocatalyst deposition on BiVO4. Materials<br>Today Energy, 2022, 26, 100986.                                                                                          | 4.7  | 6         |
| 5  | Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical<br>Treatment to Tune the Selectivity of CO <sub>2</sub> Reduction toward Valuable Products. ACS<br>Catalysis, 2022, 12, 4792-4805. | 11.2 | 24        |
| 6  | Green synthesis of graphite-based photo-Fenton nanocatalyst from waste tar via a self-reduction and solvent-free strategy. Science of the Total Environment, 2022, 824, 153772.                                               | 8.0  | 6         |
| 7  | Hetero-phase dendritic elemental phosphorus for visible light photocatalytic hydrogen generation.<br>Applied Catalysis B: Environmental, 2022, 312, 121428.                                                                   | 20.2 | 15        |
| 8  | Modulating the Active Sites of Oxygenâ€Đeficient TiO <sub>2</sub> by Copper Loading for Enhanced<br>Electrocatalytic Nitrogen Reduction to Ammonia. Small, 2022, 18, e2200996.                                                | 10.0 | 29        |
| 9  | Resolve deep-rooted challenges of halide perovskite for sustainable energy development and environmental remediation. Nano Energy, 2022, 99, 107401.                                                                          | 16.0 | 14        |
| 10 | Modulating the Active Sites of Oxygenâ€Đeficient TiO <sub>2</sub> by Copper Loading for Enhanced<br>Electrocatalytic Nitrogen Reduction to Ammonia (Small 25/2022). Small, 2022, 18, .                                        | 10.0 | 3         |
| 11 | Surface Modulation Inducing Bismuth-Rich Surface Composition in BiVO <sub>4</sub> for Efficient<br>Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2022, 5, 8419-8427.                                    | 5.1  | 14        |
| 12 | FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. Journal of Energy Chemistry, 2021, 52, 92-101.                             | 12.9 | 37        |
| 13 | Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42, 25-36.                                         | 14.0 | 272       |
| 14 | Superior photoelectrocatalytic performance of ternary structural BiVO4/GQD/g-C3N4 heterojunction. Journal of Colloid and Interface Science, 2021, 586, 785-796.                                                               | 9.4  | 32        |
| 15 | Recent advances in photodegradation of antibiotic residues in water. Chemical Engineering Journal, 2021, 405, 126806.                                                                                                         | 12.7 | 234       |
| 16 | Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A. Chemosphere, 2021, 263, 128279.                                                | 8.2  | 53        |
| 17 | Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation. Chemical Engineering Journal, 2021, 420, 127709.                                                       | 12.7 | 56        |
| 18 | Selective Ethanol Oxidation to Acetaldehyde on Nanostructured Zeolitic Imidazolate<br>Frameworkâ€8â€Wrapped ZnO Photothermocatalyst Thin Films. Solar Rrl, 2021, 5, 2000423.                                                  | 5.8  | 26        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. Journal of Materials Chemistry A, 2021, 9, 20277-20319.                                                                  | 10.3 | 53        |
| 20 | Mechanism of Incorporation of Zirconium into BiVO <sub>4</sub> Visible-Light Photocatalyst. Journal of Physical Chemistry C, 2021, 125, 3320-3326.                                                                                         | 3.1  | 14        |
| 21 | Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Longâ€lived Charges Applied in<br>Selective Photocatalytic CO <sub>2</sub> Reduction to CH <sub>4</sub> . Angewandte Chemie, 2021, 133,<br>8536-8540.                        | 2.0  | 11        |
| 22 | Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Longâ€lived Charges Applied in<br>Selective Photocatalytic CO <sub>2</sub> Reduction to CH <sub>4</sub> . Angewandte Chemie -<br>International Edition, 2021, 60, 8455-8459. | 13.8 | 152       |
| 23 | Antibacterial Activity of Reduced Graphene Oxide. Journal of Nanomaterials, 2021, 2021, 1-10.                                                                                                                                              | 2.7  | 18        |
| 24 | Tracking Sâ€Scheme Charge Transfer Pathways in Mo <sub>2</sub> C/CdS H <sub>2</sub> â€Evolution<br>Photocatalysts. Solar Rrl, 2021, 5, 2100177.                                                                                            | 5.8  | 117       |
| 25 | Oxygen Nucleation of MoS <sub>2</sub> Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.                                                                         | 6.8  | 3         |
| 26 | A CuNi Alloy–Carbon Layer Core–Shell Catalyst for Highly Efficient Conversion of Aqueous<br>Formaldehyde to Hydrogen at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13,<br>37299-37307.                                    | 8.0  | 24        |
| 27 | Coupled porosity and heterojunction engineering: MOF-derived porous Co3O4 embedded on TiO2 nanotube arrays for water remediation. Chemosphere, 2021, 274, 129799.                                                                          | 8.2  | 5         |
| 28 | Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.                                                                                                               | 47.7 | 156       |
| 29 | Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing<br>Photoelectrochemical Water Oxidation of Bi <sub>2</sub> WO <sub>6</sub> . Small, 2021, 17, e2102023.                                                    | 10.0 | 14        |
| 30 | In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for<br>shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B: Environmental, 2021, 291,<br>120104.                            | 20.2 | 258       |
| 31 | Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing<br>Photoelectrochemical Water Oxidation of Bi <sub>2</sub> WO <sub>6</sub> (Small 35/2021). Small,<br>2021, 17, 2170183.                                   | 10.0 | 2         |
| 32 | Unveiling Carrier Dynamics in Periodic Porous BiVO <sub>4</sub> Photocatalyst for Enhanced Solar<br>Water Splitting. ACS Energy Letters, 2021, 6, 3400-3407.                                                                               | 17.4 | 68        |
| 33 | Selective N2/H2O adsorption onto 2D amphiphilic amorphous photocatalysts for ambient gas-phase nitrogen fixation. Applied Catalysis B: Environmental, 2021, 294, 120240.                                                                   | 20.2 | 10        |
| 34 | Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like<br>ZnO/BiVO4 nanocomposite. Materials Chemistry and Physics, 2021, 271, 124871.                                                          | 4.0  | 40        |
| 35 | In situ construction of elemental phosphorus nanorod-modified TiO2 photocatalysts for efficient visible-light-driven H2 generation. Applied Catalysis B: Environmental, 2021, 297, 120412.                                                 | 20.2 | 30        |
| 36 | Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2021, 297, 120438.                                                         | 20.2 | 47        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | <i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.                                                                                    | 5.9  | 1         |
| 38 | 3.17% efficient Cu <sub>2</sub> ZnSnS <sub>4</sub> –BiVO <sub>4</sub> integrated tandem cell for standalone overall solar water splitting. Energy and Environmental Science, 2021, 14, 1480-1489.                                                         | 30.8 | 74        |
| 39 | Chemical reduction-induced surface oxygen vacancies of BiVO <sub>4</sub> photoanodes with enhanced photoelectrochemical performance. Sustainable Energy and Fuels, 2021, 5, 2284-2293.                                                                    | 4.9  | 21        |
| 40 | Tailoring the morphological structure of BiVO4 photocatalyst for enhanced photoelectrochemical solar hydrogen production from natural lake water. Applied Surface Science, 2020, 504, 144417.                                                             | 6.1  | 48        |
| 41 | Flame-made amorphous solid acids with tunable acidity for the aqueous conversion of glucose to levulinic acid. Green Chemistry, 2020, 22, 688-698.                                                                                                        | 9.0  | 14        |
| 42 | Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Advanced Materials, 2020, 32, e1904717.                                                                                                                                    | 21.0 | 213       |
| 43 | Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China Materials, 2020, 63, 2153-2188.                                                                                                                                     | 6.3  | 281       |
| 44 | Visible-light photocatalysis and charge carrier dynamics of elemental crystalline red phosphorus.<br>Journal of Chemical Physics, 2020, 153, 024707.                                                                                                      | 3.0  | 13        |
| 45 | Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nature Catalysis, 2020, 3, 1034-1043.                                                                                                                             | 34.4 | 90        |
| 46 | Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.                                                                 | 16.0 | 100       |
| 47 | Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches. Energies, 2020, 13, 4250.                                                                                                                                      | 3.1  | 17        |
| 48 | Enhanced Electrochemical CO <sub>2</sub> Reduction of Cu@Cu <i><sub>x</sub></i> O Nanoparticles<br>Decorated on 3D Vertical Graphene with Intrinsic sp <sup>3</sup> â€type Defect. Advanced Functional<br>Materials, 2020, 30, 1910118.                   | 14.9 | 54        |
| 49 | Z-Schematic Solar Water Splitting Using Fine Particles of H <sub>2</sub> -Evolving<br>(CuGa) <sub>0.5</sub> ZnS <sub>2</sub> Photocatalyst Prepared by a Flux Method with Chloride Salts.<br>ACS Applied Energy Materials, 2020, 3, 5684-5692.            | 5.1  | 22        |
| 50 | Solid Nanoporosity Governs Catalytic CO <sub>2</sub> and N <sub>2</sub> Reduction. ACS Nano, 2020, 14, 7734-7759.                                                                                                                                         | 14.6 | 59        |
| 51 | A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and<br>Technology, 2020, 56, 89-121.                                                                                                                        | 10.7 | 364       |
| 52 | Experimental and DFT Insights on Microflower g-C <sub>3</sub> N <sub>4</sub> /BiVO <sub>4</sub><br>Photocatalyst for Enhanced Photoelectrochemical Hydrogen Generation from Lake Water. ACS<br>Sustainable Chemistry and Engineering, 2020, 8, 9393-9403. | 6.7  | 59        |
| 53 | Balancing the crystallinity and specific surface area of bismuth tungstate for photocatalytic water oxidation. Molecular Catalysis, 2020, 487, 110887.                                                                                                    | 2.0  | 5         |
| 54 | Preparation of Bi-based photocatalysts in the form of powdered particles and thin films: a review.<br>Journal of Materials Chemistry A, 2020, 8, 15302-15318.                                                                                             | 10.3 | 76        |

| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and<br>visible-light driven photocatalytic degradation of norfloxacin. Chemical Engineering Journal, 2020,<br>401, 126012.                                                                        | 12.7 | 144       |
| 56 | Customised fabrication of nitrogen-doped biochar for environmental and energy applications.<br>Chemical Engineering Journal, 2020, 401, 126136.                                                                                                                                      | 12.7 | 158       |
| 57 | Scavenger-free and self-powered photocathodic sensing system for aqueous hydrogen peroxide monitoring by CuO/ZnO nanostructure. Chemical Engineering Science, 2020, 226, 115886.                                                                                                     | 3.8  | 16        |
| 58 | Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 390, 124496.                                                                                         | 12.7 | 174       |
| 59 | A pulse electrodeposited amorphous tunnel layer stabilises Cu <sub>2</sub> O for efficient<br>photoelectrochemical water splitting under visible-light irradiation. Journal of Materials Chemistry<br>A, 2020, 8, 5638-5646.                                                         | 10.3 | 78        |
| 60 | Light-Induced Formation of MoO <i><sub>x</sub></i> S <i><sub>y</sub></i> Clusters on CdS Nanorods<br>as Cocatalyst for Enhanced Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12,<br>8324-8332.                                                                      | 8.0  | 67        |
| 61 | Reversible ternary nickelâ€cobaltâ€iron catalysts for intermittent water electrolysis. EcoMat, 2020, 2,<br>e12012.                                                                                                                                                                   | 11.9 | 14        |
| 62 | Surface plasmon resonance effect of a Pt-nano-particles-modified TiO2 nanoball overlayer enables a<br>significant enhancement in efficiency to 3.5% for a Cu2ZnSnS4-based thin film photocathode used for<br>solar water splitting. Chemical Engineering Journal, 2020, 396, 125264. | 12.7 | 18        |
| 63 | Light soaking effect driven in porphyrin dye-sensitized solar cells using 1D TiO2 nanotube<br>photoanodes. Sustainable Materials and Technologies, 2020, 24, e00165.                                                                                                                 | 3.3  | 9         |
| 64 | Biorenewable hydrogen production through biomass gasification: A review and future prospects.<br>Environmental Research, 2020, 186, 109547.                                                                                                                                          | 7.5  | 280       |
| 65 | Cu2O photocatalyst: Activity enhancement driven by concave surface. Materials Today Energy, 2020, 16, 100422.                                                                                                                                                                        | 4.7  | 9         |
| 66 | 3D Heterostructured Copper Electrode for Conversion of Carbon Dioxide to Alcohols at Low<br>Overpotentials. Advanced Sustainable Systems, 2019, 3, 1800064.                                                                                                                          | 5.3  | 37        |
| 67 | Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 20851-20856.                                                                                  | 7.1  | 7         |
| 68 | The Dependence of Bi <sub>2</sub> MoO <sub>6</sub> Photocatalytic Water Oxidation Capability on<br>Crystal Facet Engineering. ChemPhotoChem, 2019, 3, 1246-1253.                                                                                                                     | 3.0  | 23        |
| 69 | Modulating Activity through Defect Engineering of Tin Oxides for Electrochemical CO <sub>2</sub><br>Reduction. Advanced Science, 2019, 6, 1900678.                                                                                                                                   | 11.2 | 92        |
| 70 | Self-cleaning BiOBr/Ag photocatalytic membrane for membrane regeneration under visible light in membrane distillation. Chemical Engineering Journal, 2019, 378, 122137.                                                                                                              | 12.7 | 50        |
| 71 | An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angewandte Chemie -<br>International Edition, 2019, 58, 16811-16814.                                                                                                                                      | 13.8 | 48        |
| 72 | An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angewandte Chemie, 2019,<br>131, 16967-16970.                                                                                                                                                             | 2.0  | 15        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Interfacial origins of visible-light photocatalytic activity in ZnS–GaP multilayers. Acta Materialia,<br>2019, 181, 139-147.                                                                                                                                 | 7.9  | 5         |
| 74 | Hydrogen Production: Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures:<br>A Review (Small Methods 1/2019). Small Methods, 2019, 3, 1800053.                                                                                        | 8.6  | 7         |
| 75 | GaP–ZnS Multilayer Films: Visible-Light Photoelectrodes by Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 3336-3342.                                                                                                                     | 3.1  | 7         |
| 76 | Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO<br>micro-flowers with booming solar photocatalytic activity. Journal of Industrial and Engineering<br>Chemistry, 2019, 77, 393-407.                    | 5.8  | 64        |
| 77 | The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in<br>Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Interfaces, 2019, 11, 23125-23134.                                                           | 8.0  | 34        |
| 78 | Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.                                                                                                          | 9.0  | 80        |
| 79 | Solar Water Splitting under Neutral Conditions Using Zâ€Scheme Systems with Moâ€Doped<br>BiVO <sub>4</sub> as an O <sub>2</sub> â€Evolving Photocatalyst. Energy Technology, 2019, 7, 1900358.                                                               | 3.8  | 13        |
| 80 | Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic<br>acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 2019, 372,<br>992-1006.                                            | 12.7 | 259       |
| 81 | Photocatalytic generation of hydrogen coupled with in-situ hydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 28521-28526.                                                                                                                | 7.1  | 7         |
| 82 | Photocatalytic degradation of real industrial poultry wastewater via platinum decorated<br>BiVO4/g-C3N4 photocatalyst under solar light irradiation. Journal of Photochemistry and<br>Photobiology A: Chemistry, 2019, 378, 46-56.                           | 3.9  | 40        |
| 83 | Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chemical Society Reviews, 2019, 48, 1255-1271.                                                                           | 38.1 | 225       |
| 84 | Lightâ€Ðriven Sustainable Hydrogen Production Utilizing TiO <sub>2</sub> Nanostructures: A Review.<br>Small Methods, 2019, 3, 1800184.                                                                                                                       | 8.6  | 118       |
| 85 | Photocatalytic degradation of phenol wastewater over Z-scheme g-C3N4/CNT/BiVO4 heterostructure photocatalyst under solar light irradiation. Journal of Molecular Liquids, 2019, 277, 977-988.                                                                | 4.9  | 116       |
| 86 | Carbonâ€Coated Cu nanoparticles as a Cocatalyst of gâ€C <sub>3</sub> N <sub>4</sub> for Enhanced<br>Photocatalytic H <sub>2</sub> Evolution Activity under Visibleâ€Light Irradiation. Energy Technology,<br>2019, 7, 1800846.                               | 3.8  | 17        |
| 87 | ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chemical Engineering Journal, 2019, 362, 658-666.                                                                         | 12.7 | 76        |
| 88 | Manipulation of Charge Transport by Metallic V <sub>13</sub> O <sub>16</sub> Decorated on Bismuth Vanadate Photoelectrochemical Catalyst. Advanced Materials, 2019, 31, e1807204.                                                                            | 21.0 | 57        |
| 89 | Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Applied Surface Science, 2019, 476, 205-220. | 6.1  | 66        |
| 90 | Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 191-211.                                   | 11.6 | 113       |

| #   | Article                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Synthesis and characterization of a La Ni/α-Al2O3 catalyst and its use in pyrolysis of glycerol to syngas.<br>Renewable Energy, 2019, 132, 1389-1401.                                                                                                                                                    | 8.9  | 25        |
| 92  | Decorating platinum on nitrogen-doped graphene sheets: Control of the platinum particle size distribution for improved photocatalytic H2 generation. Chemical Engineering Science, 2019, 194, 85-93.                                                                                                     | 3.8  | 31        |
| 93  | Cocatalysts on Semiconductor Photocatalyst: A Mini Review. Journal of the Indonesian Chemical<br>Society, 2019, 2, 72.                                                                                                                                                                                   | 0.3  | 0         |
| 94  | Improving the Photo-Oxidative Performance of Bi <sub>2</sub> MoO <sub>6</sub> by Harnessing the<br>Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition. ACS Applied Materials<br>& Interfaces, 2018, 10, 9342-9352.                                                            | 8.0  | 44        |
| 95  | MoS <sub>2</sub> Quantum Dots@TiO <sub>2</sub> Nanotube Arrays: An Extended-Spectrum-Driven<br>Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.                                                                                                                             | 6.8  | 77        |
| 96  | A dual-electrolyte system for photoelectrochemical hydrogen generation using CuInS2-In2O3-TiO2 nanotube array thin film. Science China Materials, 2018, 61, 895-904.                                                                                                                                     | 6.3  | 16        |
| 97  | Transformation of Cuprous Oxide into Hollow Copper Sulfide Cubes for Photocatalytic Hydrogen<br>Generation. Journal of Physical Chemistry C, 2018, 122, 14072-14081.                                                                                                                                     | 3.1  | 43        |
| 98  | Highly Selective Reduction of CO <sub>2</sub> to Formate at Low Overpotentials Achieved by a<br>Mesoporous Tin Oxide Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 1670-1679.                                                                                                     | 6.7  | 96        |
| 99  | Ab initio study of two-dimensional PdPS as an ideal light harvester and promising catalyst for<br>hydrogen evolution reaction. Materials Today Energy, 2018, 7, 136-140.                                                                                                                                 | 4.7  | 24        |
| 100 | Pulsed Electrodeposition of Co3 O4 Nanocrystals on One-Dimensional ZnO Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 889-889.                                                                                                                                          | 2.8  | 0         |
| 101 | Future Energy Technology: Enabling New Science for a Sustainable Future. ChemPlusChem, 2018, 83, 890-892.                                                                                                                                                                                                | 2.8  | 2         |
| 102 | Electroreduction of CO <sub>2</sub> to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties. ACS Energy Letters, 2018, 3, 2292-2298.                                                                                                                                          | 17.4 | 129       |
| 103 | A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. Journal of Materials Chemistry B, 2018, 6, 4551-4568.                                                                                                                                                         | 5.8  | 92        |
| 104 | Oxygen-deficient bismuth tungstate and bismuth oxide composite photoanode with improved photostability. Science Bulletin, 2018, 63, 990-996.                                                                                                                                                             | 9.0  | 29        |
| 105 | Pulsed Electrodeposition of Co <sub>3</sub> O <sub>4</sub> Nanocrystals on Oneâ€Dimensional ZnO<br>Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 934-940.                                                                                                              | 2.8  | 16        |
| 106 | Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution.<br>Chemical Engineering Journal, 2018, 353, 636-644.                                                                                                                                                   | 12.7 | 56        |
| 107 | Concentration-Mediated Band Gap Reduction of Bi <sub>2</sub> MoO <sub>6</sub> Photoanodes<br>Prepared by Bi <sup>3+</sup> Cation Insertions into Anodized MoO <sub>3</sub> Thin Films:<br>Structural, Optical, and Photoelectrochemical Properties. ACS Applied Energy Materials, 2018, 1,<br>3955-3964. | 5.1  | 14        |
| 108 | A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy and Environmental Science, 2018, 11, 1898-1910.                                                                                                                                         | 30.8 | 192       |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or<br>Selfâ€Reduction. Angewandte Chemie, 2018, 130, 13801-13805.                                                                                            | 2.0  | 55        |
| 110 | Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or<br>Selfâ€Reduction. Angewandte Chemie - International Edition, 2018, 57, 13613-13617.                                                                     | 13.8 | 177       |
| 111 | Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustainable Materials and Technologies, 2018, 18, e00075.                                                                   | 3.3  | 22        |
| 112 | Multipronged Validation of Oxalate C–C Bond Cleavage Driven by Au-TiO <sub>2</sub> Interfacial<br>Charge Transfer Using Operando DRIFTS. ACS Catalysis, 2018, 8, 7158-7163.                                                                        | 11.2 | 8         |
| 113 | Photo-driven synthesis of polymer-coated platinized ZnO nanoparticles with enhanced photoelectrochemical charge transportation. Journal of Materials Chemistry A, 2017, 5, 4568-4575.                                                              | 10.3 | 16        |
| 114 | Highly Selective Conversion of CO <sub>2</sub> to CO Achieved by a Threeâ€Đimensional Porous Silver<br>Electrocatalyst. ChemistrySelect, 2017, 2, 879-884.                                                                                         | 1.5  | 51        |
| 115 | Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Research, 2017, 10, 1673-1696. | 10.4 | 376       |
| 116 | Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO 2 and UV/ZnO<br>photocatalytic systems: A comparative study. Journal of Environmental Management, 2017, 196, 674-680.                                           | 7.8  | 42        |
| 117 | Surface engineered tin foil for electrocatalytic reduction of carbon dioxide to formate. Catalysis<br>Science and Technology, 2017, 7, 2542-2550.                                                                                                  | 4.1  | 39        |
| 118 | Singleâ€Enzyme Biofuel Cells. Angewandte Chemie - International Edition, 2017, 56, 9762-9766.                                                                                                                                                      | 13.8 | 23        |
| 119 | Tiny Particles with Big Impacts on Clean Future Energy. Particle and Particle Systems<br>Characterization, 2017, 34, 1700102.                                                                                                                      | 2.3  | 0         |
| 120 | Improving the photo-oxidative capability of BiOBr via crystal facet engineering. Journal of Materials<br>Chemistry A, 2017, 5, 8117-8124.                                                                                                          | 10.3 | 163       |
| 121 | Enhancing the Photoactivity of Faceted BiVO <sub>4</sub> via Annealing in Oxygenâ€Deficient<br>Condition. Particle and Particle Systems Characterization, 2017, 34, 1600290.                                                                       | 2.3  | 75        |
| 122 | Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO 2. Journal of Materiomics, 2017, 3, 51-57.                                                                                                                 | 5.7  | 12        |
| 123 | Monolithic Integration of Anodic Molybdenum Oxide Pseudocapacitive Electrodes on Screenâ€Printed<br>Silicon Solar Cells for Hybrid Energy Harvestingâ€Storage Systems. Advanced Energy Materials, 2017, 7,<br>1602325.                             | 19.5 | 14        |
| 124 | Gold–silver@TiO <sub>2</sub> nanocomposite-modified plasmonic photoanodes for higher efficiency<br>dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 1395-1407.                                                           | 2.8  | 52        |
| 125 | Liquid Hydrocarbon Production from CO <sub>2</sub> : Recent Development in Metalâ€Based<br>Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.                                                                                                     | 6.8  | 54        |
| 126 | Platinum electrocatalysts with plasmonic nano-cores for photo-enhanced oxygen-reduction. Nano<br>Energy, 2017, 41, 233-242.                                                                                                                        | 16.0 | 41        |

| #   | Article                                                                                                                                                                                                                                        | IF        | CITATIONS     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 127 | Batteries: An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€Ion Intercalation<br>Battery (Adv. Energy Mater. 19/2017). Advanced Energy Materials, 2017, 7, .                                                                | 19.5      | 1             |
| 128 | Nitrogen Doped Carbon Nanosheets Coupled Nickel–Carbon Pyramid Arrays Toward Efficient<br>Evolution of Hydrogen. Advanced Sustainable Systems, 2017, 1, 1700032.                                                                               | 5.3       | 12            |
| 129 | Plasmon enhanced selective electronic pathways in TiO2 supported atomically ordered bimetallic<br>Au-Cu alloys. Journal of Catalysis, 2017, 352, 638-648.                                                                                      | 6.2       | 16            |
| 130 | An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€Ion Intercalation Battery.<br>Advanced Energy Materials, 2017, 7, 1700545.                                                                                                 | 19.5      | 36            |
| 131 | Singleâ€Enzyme Biofuel Cells. Angewandte Chemie, 2017, 129, 9894-9898.                                                                                                                                                                         | 2.0       | 4             |
| 132 | Bio-mimicking TiO <sub>2</sub> architectures for enhanced photocatalytic activity under UV and visible light. RSC Advances, 2017, 7, 39098-39108.                                                                                              | 3.6       | 9             |
| 133 | Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO <sub>4</sub> : a review. Journal of Materials Chemistry A, 2017, 5, 16498-16521.                                       | 10.3      | 364           |
| 134 | One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite<br>Solar Cells. Energies, 2016, 9, 1030.                                                                                                        | 3.1       | 23            |
| 135 | Efficient Water Splitting Catalyzed by Cobalt Phosphideâ€Based Nanoneedle Arrays Supported on Carbon<br>Cloth. ChemSusChem, 2016, 9, 472-477.                                                                                                  | 6.8       | 185           |
| 136 | Highly Selective and Stable Reduction of CO <sub>2</sub> to CO by a Graphitic Carbon Nitride/Carbon<br>Nanotube Composite Electrocatalyst. Chemistry - A European Journal, 2016, 22, 11991-11996.                                              | 3.3       | 132           |
| 137 | Fabrication of high aspect ratio and openâ€ended TiO <sub>2</sub> nanotube photocatalytic arrays through electrochemical anodization. AICHE Journal, 2016, 62, 415-420.                                                                        | 3.6       | 11            |
| 138 | Nanorods: Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2 O2 Production (Adv.) Tj ETQq0 0                                                                                                                                 | 0 rgBT /O | verlock 10 Tf |
| 139 | ZnS Thin Films for Visible-Light Active Photoelectrodes: Effect of Film Morphology and Crystal Structure. Crystal Growth and Design, 2016, 16, 2461-2465.                                                                                      | 3.0       | 27            |
| 140 | Defect engineering of ZnS thin films for photoelectrochemical water-splitting under visible light.<br>Solar Energy Materials and Solar Cells, 2016, 153, 179-185.                                                                              | 6.2       | 69            |
| 141 | A study on the kinetics of syngas production from glycerol over alumina-supported samarium–nickel<br>catalyst. International Journal of Hydrogen Energy, 2016, 41, 10568-10577.                                                                | 7.1       | 17            |
| 142 | Graphitic Carbon Nitride (g-C <sub>3</sub> N <sub>4</sub> )-Based Photocatalysts for Artificial<br>Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?.<br>Chemical Reviews, 2016, 116, 7159-7329. | 47.7      | 5,505         |
| 143 | Mobile Polaronic States in α-MoO <sub>3</sub> : An ab Initio Investigation of the Role of Oxygen<br>Vacancies and Alkali Ions. ACS Applied Materials & Interfaces, 2016, 8, 10911-10917.                                                       | 8.0       | 49            |
| 144 | Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water<br>Oxidation on BiVO <sub>4</sub> . ACS Applied Materials & Interfaces, 2016, 8, 28607-28614.                                                  | 8.0       | 73            |

| #   | Article                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Photocatalysis: Interfacing BiVO <sub>4</sub> with Reduced Graphene Oxide for Enhanced<br>Photoactivity: A Tale of Facet Dependence of Electron Shuttling (Small 38/2016). Small, 2016, 12,<br>5232-5232.                                                                                  | 10.0 | 0         |
| 146 | Water Splitting and CO <sub>2</sub> Reduction under Visible Light Irradiation Using Z-Scheme Systems<br>Consisting of Metal Sulfides, CoOx-Loaded BiVO <sub>4</sub> , and a Reduced Graphene Oxide Electron<br>Mediator. Journal of the American Chemical Society, 2016, 138, 10260-10264. | 13.7 | 461       |
| 147 | Interfacing BiVO 4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet<br>Dependence of Electron Shuttling. Small, 2016, 12, 5295-5302.                                                                                                                                | 10.0 | 68        |
| 148 | Epitaxial Growth of Au–Pt–Ni Nanorods for Direct High Selectivity H <sub>2</sub> O <sub>2</sub><br>Production. Advanced Materials, 2016, 28, 9949-9955.                                                                                                                                    | 21.0 | 205       |
| 149 | C–C Cleavage by Au/TiO <sub>2</sub> during Ethanol Oxidation: Understanding Bandgap<br>Photoexcitation and Plasmonically Mediated Charge Transfer via Quantitative in Situ DRIFTS. ACS<br>Catalysis, 2016, 6, 8021-8029.                                                                   | 11.2 | 38        |
| 150 | Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions. Journal of Hazardous Materials, 2016, 304, 400-408.                                                                                 | 12.4 | 54        |
| 151 | Exploring Cu oxidation state on TiO2 and its transformation during photocatalytic hydrogen evolution. Applied Catalysis A: General, 2016, 521, 190-201.                                                                                                                                    | 4.3  | 73        |
| 152 | BiVO <sub>4</sub> {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. Journal of Physical Chemistry Letters, 2016, 7, 1400-1405.                                                                                          | 4.6  | 231       |
| 153 | Understanding Plasmon and Band Gap Photoexcitation Effects on the Thermal-Catalytic Oxidation of Ethanol by TiO <sub>2</sub> -Supported Gold. ACS Catalysis, 2016, 6, 1870-1879.                                                                                                           | 11.2 | 105       |
| 154 | Photoelectrochemical water oxidation using a Bi <sub>2</sub> MoO <sub>6</sub> /MoO <sub>3</sub><br>heterojunction photoanode synthesised by hydrothermal treatment of an anodised MoO <sub>3</sub><br>thin film. Journal of Materials Chemistry A, 2016, 4, 6964-6971.                     | 10.3 | 71        |
| 155 | Hydrogen evolution via glycerol photoreforming over Cu–Pt nanoalloys on TiO2. Applied Catalysis A:<br>General, 2016, 518, 221-230.                                                                                                                                                         | 4.3  | 45        |
| 156 | Electrospun Polyacrylonitrile–Ionic Liquid Nanofibers for Superior PM <sub>2.5</sub> Capture<br>Capacity. ACS Applied Materials & Interfaces, 2016, 8, 7030-7036.                                                                                                                          | 8.0  | 92        |
| 157 | An electrochemical sensing platform based on a reduced graphene oxide–cobalt oxide<br>nanocube@platinum nanocomposite for nitric oxide detection. Journal of Materials Chemistry A, 2015,<br>3, 14458-14468.                                                                               | 10.3 | 141       |
| 158 | Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS <sub>2</sub> for visible light energy conversion. Dalton Transactions, 2015, 44, 7127-7130.                                                                                                               | 3.3  | 16        |
| 159 | Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization. Polymer, 2015, 63, 1-9.                                                                                                                                      | 3.8  | 42        |
| 160 | Z-Schematic Water Splitting into H <sub>2</sub> and O <sub>2</sub> Using Metal Sulfide as a<br>Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Mediator.<br>Journal of the American Chemical Society, 2015, 137, 604-607.                             | 13.7 | 467       |
| 161 | Introducing a protective interlayer of TiO2 in Cu2O–CuO heterojunction thin film as a highly stable visible light photocathode. RSC Advances, 2015, 5, 5231-5236.                                                                                                                          | 3.6  | 55        |
| 162 | Detailed kinetic observation revealing the formation mechanism of chiral mesoporous silica (CMS)<br>synthesized by cooperative self-assembly of anionic chiral surfactant. Materials Research Bulletin,<br>2015, 62, 192-199.                                                              | 5.2  | 7         |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study. Current Applied Physics, 2015, 15, 1143-1147.                                                     | 2.4  | 61        |
| 164 | Frequency-regulated pulsed electrodeposition of CuInS <sub>2</sub> on ZnO nanorod arrays as visible light photoanodes. Journal of Materials Chemistry A, 2015, 3, 15876-15881.                                              | 10.3 | 30        |
| 165 | Polyurethane sponge facilitating highly dispersed TiO2 nanoparticles on reduced graphene oxide sheets for enhanced photoelectro-oxidation of ethanol. Journal of Materials Chemistry A, 2015, 3, 15675-15682.               | 10.3 | 33        |
| 166 | Solar hydrogen evolution using a CuGaS <sub>2</sub> photocathode improved by incorporating reduced graphene oxide. Journal of Materials Chemistry A, 2015, 3, 8566-8570.                                                    | 10.3 | 45        |
| 167 | Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals. Materials Chemistry and Physics, 2015, 159, 38-45.                                                         | 4.0  | 40        |
| 168 | Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for<br>improved photocharge transport under visible light illumination. Journal of Materials Chemistry A,<br>2015, 3, 19582-19587. | 10.3 | 55        |
| 169 | Enhanced Visible Light-Induced Charge Separation and Charge Transport in Cu <sub>2</sub> O-Based<br>Photocathodes by Urea Treatment. ACS Applied Materials & Interfaces, 2015, 7, 19887-19893.                              | 8.0  | 27        |
| 170 | Electrodeposited Cu <sub>2</sub> O as Photoelectrodes with Controllable Conductivity Type for Solar Energy Conversion. Journal of Physical Chemistry C, 2015, 119, 26275-26282.                                             | 3.1  | 79        |
| 171 | Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes. Beilstein Journal of Nanotechnology, 2014, 5, 895-902.                                                  | 2.8  | 9         |
| 172 | Impact of Cu oxidation state on photocatalytic H2 production by Cu/TiO <inf>2</inf> . , 2014, ,                                                                                                                             |      | 1         |
| 173 | Gold Nanoparticles Embedded within Mesoporous Cobalt Oxide Enhance Electrochemical Oxygen<br>Evolution. ChemSusChem, 2014, 7, 82-86.                                                                                        | 6.8  | 99        |
| 174 | Investigating the preparation parameters during the synthesis of CuInS <inf>2</inf> thin film photoelectrodes. , 2014, , .                                                                                                  |      | 0         |
| 175 | Interface-dependent electrochemical behavior of nanostructured manganese (IV) oxide (Mn3O4).<br>Electrochimica Acta, 2014, 130, 810-817.                                                                                    | 5.2  | 14        |
| 176 | Harvesting, Storing and Utilising Solar Energy using MoO <sub>3</sub> : Modulating Structural<br>Distortion through pH Adjustment. ChemSusChem, 2014, 7, 1934-1941.                                                         | 6.8  | 36        |
| 177 | Hollow hybrid polymer–graphene oxide nanoparticles via Pickering miniemulsion polymerization.<br>Nanoscale, 2014, 6, 8590.                                                                                                  | 5.6  | 70        |
| 178 | CuO x dispersion and reducibility on TiO 2 and its impact on photocatalytic hydrogen evolution.<br>International Journal of Hydrogen Energy, 2014, 39, 12499-12506.                                                         | 7.1  | 56        |
| 179 | Fabrication of a CuInS <sub>2</sub> photoelectrode using a single-step electrodeposition with controlled calcination atmosphere. RSC Advances, 2014, 4, 3278-3283.                                                          | 3.6  | 20        |
| 180 | Influence of MoO3(110) Crystalline Plane on Its Self-Charging Photoelectrochemical Properties.<br>Scientific Reports, 2014, 4, 7428.                                                                                        | 3.3  | 58        |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Reduced Graphene Oxide: Control of Water Miscibility, Conductivity, and Defects by Photocatalysis.<br>ChemCatChem, 2013, 5, 3060-3067.                                                                                                                  | 3.7  | 22        |
| 182 | Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale, 2013, 5, 2952.                                                                                                            | 5.6  | 144       |
| 183 | Influence of Annealing Temperature of WO <sub>3</sub> in Photoelectrochemical Conversion and Energy Storage for Water Splitting. ACS Applied Materials & Interfaces, 2013, 5, 5269-5275.                                                                | 8.0  | 89        |
| 184 | Understanding Selfâ€Photorechargeability of WO <sub>3</sub> for H <sub>2</sub> Generation without<br>Light Illumination. ChemSusChem, 2013, 6, 291-298.                                                                                                 | 6.8  | 35        |
| 185 | Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2<br>nanotube films. RSC Advances, 2012, 2, 8164.                                                                                                         | 3.6  | 55        |
| 186 | A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications.<br>Energy and Environmental Science, 2012, 5, 9307.                                                                                                   | 30.8 | 138       |
| 187 | Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron–Hole Puddle,<br>Interfacial Charge Transfer, and Enhanced Visible Light Response. Journal of the American Chemical<br>Society, 2012, 134, 4393-4397.                  | 13.7 | 565       |
| 188 | Transforming Anodized WO <sub>3</sub> Films into Visible-Light-Active<br>Bi <sub>2</sub> WO <sub>6</sub> Photoelectrodes by Hydrothermal Treatment. Journal of Physical<br>Chemistry Letters, 2012, 3, 913-918.                                         | 4.6  | 86        |
| 189 | Visible light-induced charge storage, on-demand release and self-photorechargeability of WO3 film.<br>Physical Chemistry Chemical Physics, 2011, 13, 13421.                                                                                             | 2.8  | 50        |
| 190 | Wrapping the walls of n-TiO2 nanotubes with p-CuInS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chemical Communications, 2011, 47, 11288.                                                                | 4.1  | 55        |
| 191 | Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water<br>Splitting under Visible Light. Journal of the American Chemical Society, 2011, 133, 11054-11057.                                                          | 13.7 | 952       |
| 192 | Sodium Fluoride-Assisted Modulation of Anodized TiO <sub>2</sub> Nanotube for Dye-Sensitized Solar<br>Cells Application. ACS Applied Materials & Interfaces, 2011, 3, 1585-1593.                                                                        | 8.0  | 42        |
| 193 | A three-way synergy of triple-modified Bi2WO6/Ag/N–TiO2 nanojunction film for enhanced photogenerated charges utilization. Chemical Communications, 2011, 47, 8641.                                                                                     | 4.1  | 39        |
| 194 | Synthesis of Porous and Visible-Light Absorbing Bi <sub>2</sub> WO <sub>6</sub> /TiO <sub>2</sub><br>Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances. Journal<br>of Physical Chemistry C, 2011, 115, 7419-7428. | 3.1  | 186       |
| 195 | Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for<br>Visible Light Response. Journal of Physical Chemistry Letters, 2011, 2, 894-899.                                                                | 4.6  | 252       |
| 196 | Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared<br>TiO <sub>2</sub> -Reduced Graphene Oxide Composite. Journal of Physical Chemistry C, 2011, 115,<br>6004-6009.                                        | 3.1  | 403       |
| 197 | Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions.<br>Catalysis Today, 2011, 164, 353-357.                                                                                                                      | 4.4  | 167       |
| 198 | To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of<br>TiO <sub>2</sub> Nanostructured Films?. Journal of Physical Chemistry Letters, 2010, 1, 2222-2227.                                                      | 4.6  | 379       |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Reducing Graphene Oxide on a Visible-Light BiVO <sub>4</sub> Photocatalyst for an Enhanced<br>Photoelectrochemical Water Splitting. Journal of Physical Chemistry Letters, 2010, 1, 2607-2612.                | 4.6  | 825       |
| 200 | Flower-Shaped Tungsten Oxide with Inorganic Fullerene-like Structure: Synthesis and Characterization. Crystal Growth and Design, 2010, 10, 3794-3801.                                                         | 3.0  | 70        |
| 201 | Morphological Control of Carbon Carrier in Pt–Carbon Nanocomposites Derived from<br>Photocatalytic Reactions on Titanium(IV) Oxide Powders. Topics in Catalysis, 2009, 52, 627-633.                           | 2.8  | 1         |
| 202 | Origin of the High Activity of Porous Carbon-Coated Platinum Nanoparticles for Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2009, 113, 12799-12805.                                        | 3.1  | 19        |
| 203 | Rhodium Nanoparticle Encapsulated in a Porous Carbon Shell as an Active Heterogeneous Catalyst for Aromatic Hydrogenation. Advanced Functional Materials, 2008, 18, 2190-2196.                                | 14.9 | 114       |
| 204 | An efficient and reusable carbon-supported platinum catalyst for aerobic oxidation of alcohols in water. Chemical Communications, 2008, , 3181.                                                               | 4.1  | 70        |
| 205 | Photocatalytic Route for Synthesis of Hollow Porous Carbon/Pt Nanocomposites with Controllable<br>Density and Porosity. Chemistry of Materials, 2008, 20, 1154-1160.                                          | 6.7  | 30        |
| 206 | High Sintering Resistance of Platinum Nanoparticles Embedded in a Microporous Hollow Carbon Shell<br>Fabricated Through a Photocatalytic Reaction. Langmuir, 2008, 24, 6307-6312.                             | 3.5  | 31        |
| 207 | Efficient Reductive Alkylation of Aniline with Acetone over Pt Nanoparticles Encapsulated in Hollow<br>Porous Carbon. Chemistry Letters, 2008, 37, 948-949.                                                   | 1.3  | 5         |
| 208 | Selective Adsorption of Glucose-Derived Carbon Precursor on Amino-Functionalized Porous Silica<br>for Fabrication of Hollow Carbon Spheres with Porous Walls. Chemistry of Materials, 2007, 19,<br>4335-4340. | 6.7  | 126       |
| 209 | Fabrication of Hollow Carbon Nanospheres Encapsulating Platinum Nanoparticles Using a<br>Photocatalytic Reaction. Advanced Materials, 2007, 19, 597-601.                                                      | 21.0 | 123       |
| 210 | Biphasic epoxidation of 1-octene with H2O2 catalyzed by amphiphilic fluorinated Ti-loaded zirconia.<br>Journal of Fluorine Chemistry, 2007, 128, 12-16.                                                       | 1.7  | 9         |
| 211 | Hydrophobic fluorinated TiO2–ZrO2 as catalyst in epoxidation of 1-octene with aqueous hydrogen peroxide. Materials Letters, 2006, 60, 2274-2277.                                                              | 2.6  | 24        |
| 212 | ZnS-GaP Solid Solution Thin Films with Enhanced Visible-Light Photocurrent. ACS Applied Energy<br>Materials, 0, , .                                                                                           | 5.1  | 4         |