Yun Hau Ng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1984497/publications.pdf

Version: 2024-02-01

212 papers 22,624 citations

69 h-index 146 g-index

223 all docs

223
docs citations

times ranked

223

22061 citing authors

#	Article	IF	CITATIONS
1	Graphitic Carbon Nitride (g-C ₃ N ₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?. Chemical Reviews, 2016, 116, 7159-7329.	47.7	5,505
2	Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 2011, 133, 11054-11057.	13.7	952
3	Reducing Graphene Oxide on a Visible-Light BiVO ₄ Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. Journal of Physical Chemistry Letters, 2010, 1, 2607-2612.	4.6	825
4	Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron–Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response. Journal of the American Chemical Society, 2012, 134, 4393-4397.	13.7	565
5	Z-Schematic Water Splitting into H ₂ and O ₂ Using Metal Sulfide as a Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Mediator. Journal of the American Chemical Society, 2015, 137, 604-607.	13.7	467
6	Water Splitting and CO ₂ Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO ₄ , and a Reduced Graphene Oxide Electron Mediator. Journal of the American Chemical Society, 2016, 138, 10260-10264.	13.7	461
7	Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO ₂ -Reduced Graphene Oxide Composite. Journal of Physical Chemistry C, 2011, 115, 6004-6009.	3.1	403
8	To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO ₂ Nanostructured Films?. Journal of Physical Chemistry Letters, 2010, 1, 2222-2227.	4.6	379
9	Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Research, 2017, 10, 1673-1696.	10.4	376
10	Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO ₄ : a review. Journal of Materials Chemistry A, 2017, 5, 16498-16521.	10.3	364
11	A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56, 89-121.	10.7	364
12	Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China Materials, 2020, 63, 2153-2188.	6.3	281
13	Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 2020, 186, 109547.	7.5	280
14	Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42, 25-36.	14.0	272
15	Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 2019, 372, 992-1006.	12.7	259
16	In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B: Environmental, 2021, 291, 120104.	20.2	258
17	Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response. Journal of Physical Chemistry Letters, 2011, 2, 894-899.	4.6	252
18	Recent advances in photodegradation of antibiotic residues in water. Chemical Engineering Journal, 2021, 405, 126806.	12.7	234

#	Article	IF	CITATIONS
19	BiVO (sub) 4 (sub) {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. Journal of Physical Chemistry Letters, 2016, 7, 1400-1405.	4.6	231
20	Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chemical Society Reviews, 2019, 48, 1255-1271.	38.1	225
21	Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Advanced Materials, 2020, 32, e1904717.	21.0	213
22	Epitaxial Growth of Au–Pt–Ni Nanorods for Direct High Selectivity H ₂ O ₂ Production. Advanced Materials, 2016, 28, 9949-9955.	21.0	205
23	A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy and Environmental Science, 2018, 11, 1898-1910.	30.8	192
24	Synthesis of Porous and Visible-Light Absorbing Bi ₂ WO ₆ /TiO ₂ Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances. Journal of Physical Chemistry C, 2011, 115, 7419-7428.	3.1	186
25	Efficient Water Splitting Catalyzed by Cobalt Phosphideâ€Based Nanoneedle Arrays Supported on Carbon Cloth. ChemSusChem, 2016, 9, 472-477.	6.8	185
26	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or Selfâ€Reduction. Angewandte Chemie - International Edition, 2018, 57, 13613-13617.	13.8	177
27	Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 390, 124496.	12.7	174
28	Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions. Catalysis Today, 2011, 164, 353-357.	4.4	167
29	Improving the photo-oxidative capability of BiOBr via crystal facet engineering. Journal of Materials Chemistry A, 2017, 5, 8117-8124.	10.3	163
30	Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chemical Engineering Journal, 2020, 401, 126136.	12.7	158
31	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	47.7	156
32	Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Longâ€lived Charges Applied in Selective Photocatalytic CO ₂ Reduction to CH ₄ . Angewandte Chemie - International Edition, 2021, 60, 8455-8459.	13.8	152
33	Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale, 2013, 5, 2952.	5.6	144
34	Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin. Chemical Engineering Journal, 2020, 401, 126012.	12.7	144
35	An electrochemical sensing platform based on a reduced graphene oxide–cobalt oxide nanocube@platinum nanocomposite for nitric oxide detection. Journal of Materials Chemistry A, 2015, 3, 14458-14468.	10.3	141
36	A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications. Energy and Environmental Science, 2012, 5, 9307.	30.8	138

#	Article	IF	CITATIONS
37	Highly Selective and Stable Reduction of CO ₂ to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst. Chemistry - A European Journal, 2016, 22, 11991-11996.	3.3	132
38	Electroreduction of CO ₂ to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties. ACS Energy Letters, 2018, 3, 2292-2298.	17.4	129
39	Selective Adsorption of Glucose-Derived Carbon Precursor on Amino-Functionalized Porous Silica for Fabrication of Hollow Carbon Spheres with Porous Walls. Chemistry of Materials, 2007, 19, 4335-4340.	6.7	126
40	Fabrication of Hollow Carbon Nanospheres Encapsulating Platinum Nanoparticles Using a Photocatalytic Reaction. Advanced Materials, 2007, 19, 597-601.	21.0	123
41	Lightâ€Driven Sustainable Hydrogen Production Utilizing TiO ₂ Nanostructures: A Review. Small Methods, 2019, 3, 1800184.	8.6	118
42	Tracking Sâ€Scheme Charge Transfer Pathways in Mo ₂ C/CdS H ₂ â€Evolution Photocatalysts. Solar Rrl, 2021, 5, 2100177.	5.8	117
43	Photocatalytic degradation of phenol wastewater over Z-scheme g-C3N4/CNT/BiVO4 heterostructure photocatalyst under solar light irradiation. Journal of Molecular Liquids, 2019, 277, 977-988.	4.9	116
44	Rhodium Nanoparticle Encapsulated in a Porous Carbon Shell as an Active Heterogeneous Catalyst for Aromatic Hydrogenation. Advanced Functional Materials, 2008, 18, 2190-2196.	14.9	114
45	Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 191-211.	11.6	113
46	Understanding Plasmon and Band Gap Photoexcitation Effects on the Thermal-Catalytic Oxidation of Ethanol by TiO ₂ -Supported Gold. ACS Catalysis, 2016, 6, 1870-1879.	11.2	105
47	Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.	16.0	100
48	Gold Nanoparticles Embedded within Mesoporous Cobalt Oxide Enhance Electrochemical Oxygen Evolution. ChemSusChem, 2014, 7, 82-86.	6.8	99
49	Highly Selective Reduction of CO ₂ to Formate at Low Overpotentials Achieved by a Mesoporous Tin Oxide Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 1670-1679.	6.7	96
50	Electrospun Polyacrylonitrile–Ionic Liquid Nanofibers for Superior PM _{2.5} Capture Capacity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7030-7036.	8.0	92
51	A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. Journal of Materials Chemistry B, 2018, 6, 4551-4568.	5.8	92
52	Modulating Activity through Defect Engineering of Tin Oxides for Electrochemical CO ₂ Reduction. Advanced Science, 2019, 6, 1900678.	11.2	92
53	Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nature Catalysis, 2020, 3, 1034-1043.	34.4	90
54	Influence of Annealing Temperature of WO ₃ in Photoelectrochemical Conversion and Energy Storage for Water Splitting. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5269-5275.	8.0	89

#	Article	IF	CITATIONS
55	Transforming Anodized WO ₃ Films into Visible-Light-Active Bi ₂ WO ₆ Photoelectrodes by Hydrothermal Treatment. Journal of Physical Chemistry Letters, 2012, 3, 913-918.	4.6	86
56	Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.	9.0	80
57	Electrodeposited Cu ₂ O as Photoelectrodes with Controllable Conductivity Type for Solar Energy Conversion. Journal of Physical Chemistry C, 2015, 119, 26275-26282.	3.1	79
58	A pulse electrodeposited amorphous tunnel layer stabilises Cu ₂ O for efficient photoelectrochemical water splitting under visible-light irradiation. Journal of Materials Chemistry A, 2020, 8, 5638-5646.	10.3	78
59	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	6.8	77
60	ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chemical Engineering Journal, 2019, 362, 658-666.	12.7	76
61	Preparation of Bi-based photocatalysts in the form of powdered particles and thin films: a review. Journal of Materials Chemistry A, 2020, 8, 15302-15318.	10.3	76
62	Enhancing the Photoactivity of Faceted BiVO ₄ via Annealing in Oxygenâ€Deficient Condition. Particle and Particle Systems Characterization, 2017, 34, 1600290.	2.3	75
63	3.17% efficient Cu ₂ ZnSnS ₄ â€"BiVO ₄ integrated tandem cell for standalone overall solar water splitting. Energy and Environmental Science, 2021, 14, 1480-1489.	30.8	74
64	Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water Oxidation on BiVO ₄ . ACS Applied Materials & Interfaces, 2016, 8, 28607-28614.	8.0	73
65	Exploring Cu oxidation state on TiO2 and its transformation during photocatalytic hydrogen evolution. Applied Catalysis A: General, 2016, 521, 190-201.	4.3	73
66	Photoelectrochemical water oxidation using a Bi ₂ MoO ₆ /MoO ₃ heterojunction photoanode synthesised by hydrothermal treatment of an anodised MoO ₃ thin film. Journal of Materials Chemistry A, 2016, 4, 6964-6971.	10.3	71
67	An efficient and reusable carbon-supported platinum catalyst for aerobic oxidation of alcohols in water. Chemical Communications, 2008, , 3181.	4.1	70
68	Flower-Shaped Tungsten Oxide with Inorganic Fullerene-like Structure: Synthesis and Characterization. Crystal Growth and Design, 2010, 10, 3794-3801.	3.0	70
69	Hollow hybrid polymer–graphene oxide nanoparticles via Pickering miniemulsion polymerization. Nanoscale, 2014, 6, 8590.	5.6	70
70	Defect engineering of ZnS thin films for photoelectrochemical water-splitting under visible light. Solar Energy Materials and Solar Cells, 2016, 153, 179-185.	6.2	69
71	Interfacing BiVO 4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling. Small, 2016, 12, 5295-5302.	10.0	68
72	Unveiling Carrier Dynamics in Periodic Porous BiVO ₄ Photocatalyst for Enhanced Solar Water Splitting. ACS Energy Letters, 2021, 6, 3400-3407.	17.4	68

#	Article	IF	CITATIONS
73	Light-Induced Formation of MoO <i>_x</i> S <i>_y</i> Clusters on CdS Nanorods as Cocatalyst for Enhanced Hydrogen Evolution. ACS Applied Materials & Enhanced Hydrogen Enhanced Hydrogen Evolution. ACS Applied Materials & Enhanced Hydrogen Enhanced Hydr	8.0	67
74	Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Applied Surface Science, 2019, 476, 205-220.	6.1	66
75	Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic activity. Journal of Industrial and Engineering Chemistry, 2019, 77, 393-407.	5.8	64
76	Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study. Current Applied Physics, 2015, 15, 1143-1147.	2.4	61
77	Solid Nanoporosity Governs Catalytic CO ₂ and N ₂ Reduction. ACS Nano, 2020, 14, 7734-7759.	14.6	59
78	Experimental and DFT Insights on Microflower g-C ₃ N ₄ /BiVO ₄ Photocatalyst for Enhanced Photoelectrochemical Hydrogen Generation from Lake Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 9393-9403.	6.7	59
79	Influence of MoO3(110) Crystalline Plane on Its Self-Charging Photoelectrochemical Properties. Scientific Reports, 2014, 4, 7428.	3.3	58
80	Manipulation of Charge Transport by Metallic V $<$ sub $>$ 13 $<$ /sub $>$ 0 $<$ sub $>$ 16 $<$ /sub $>$ Decorated on Bismuth Vanadate Photoelectrochemical Catalyst. Advanced Materials, 2019, 31, e1807204.	21.0	57
81	CuO x dispersion and reducibility on TiO 2 and its impact on photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 12499-12506.	7.1	56
82	Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chemical Engineering Journal, 2018, 353, 636-644.	12.7	56
83	Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation. Chemical Engineering Journal, 2021, 420, 127709.	12.7	56
84	Wrapping the walls of n-TiO2 nanotubes with p-CuInS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chemical Communications, 2011, 47, 11288.	4.1	55
85	Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2 nanotube films. RSC Advances, 2012, 2, 8164.	3.6	55
86	Introducing a protective interlayer of TiO2 in Cu2O–CuO heterojunction thin film as a highly stable visible light photocathode. RSC Advances, 2015, 5, 5231-5236.	3.6	55
87	Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. Journal of Materials Chemistry A, 2015, 3, 19582-19587.	10.3	55
88	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or Selfâ€Reduction. Angewandte Chemie, 2018, 130, 13801-13805.	2.0	55
89	Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions. Journal of Hazardous Materials, 2016, 304, 400-408.	12.4	54
90	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	6.8	54

#	Article	IF	Citations
91	Enhanced Electrochemical CO ₂ Reduction of Cu@Cu <i>_x</i> O Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp ³ â€type Defect. Advanced Functional Materials, 2020, 30, 1910118.	14.9	54
92	Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A. Chemosphere, 2021, 263, 128279.	8.2	53
93	Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. Journal of Materials Chemistry A, 2021, 9, 20277-20319.	10.3	53
94	Gold–silver@TiO ₂ nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 1395-1407.	2.8	52
95	Highly Selective Conversion of CO ₂ to CO Achieved by a Threeâ€Dimensional Porous Silver Electrocatalyst. ChemistrySelect, 2017, 2, 879-884.	1.5	51
96	Visible light-induced charge storage, on-demand release and self-photorechargeability of WO3 film. Physical Chemistry Chemical Physics, 2011, 13, 13421.	2.8	50
97	Self-cleaning BiOBr/Ag photocatalytic membrane for membrane regeneration under visible light in membrane distillation. Chemical Engineering Journal, 2019, 378, 122137.	12.7	50
98	Mobile Polaronic States in $\hat{l}\pm$ -MoO ₃ : An ab Initio Investigation of the Role of Oxygen Vacancies and Alkali Ions. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10911-10917.	8.0	49
99	An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angewandte Chemie - International Edition, 2019, 58, 16811-16814.	13.8	48
100	Tailoring the morphological structure of BiVO4 photocatalyst for enhanced photoelectrochemical solar hydrogen production from natural lake water. Applied Surface Science, 2020, 504, 144417.	6.1	48
101	Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2021, 297, 120438.	20.2	47
102	Solar hydrogen evolution using a CuGaS ₂ photocathode improved by incorporating reduced graphene oxide. Journal of Materials Chemistry A, 2015, 3, 8566-8570.	10.3	45
103	Hydrogen evolution via glycerol photoreforming over Cu–Pt nanoalloys on TiO2. Applied Catalysis A: General, 2016, 518, 221-230.	4.3	45
104	Improving the Photo-Oxidative Performance of Bi ₂ MoO ₆ by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition. ACS Applied Materials & Amp; Interfaces, 2018, 10, 9342-9352.	8.0	44
105	Advancement of Bismuthâ€Based Materials for Electrocatalytic and Photo(electro)catalytic Ammonia Synthesis. Advanced Functional Materials, 2022, 32, 2106713.	14.9	44
106	Transformation of Cuprous Oxide into Hollow Copper Sulfide Cubes for Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2018, 122, 14072-14081.	3.1	43
107	Sodium Fluoride-Assisted Modulation of Anodized TiO ₂ Nanotube for Dye-Sensitized Solar Cells Application. ACS Applied Materials & Solar Solar Representation (1988) in the solution of Anodized TiO <sub (1988)="" ano<="" anodized="" in="" of="" solution="" td="" the="" tio_{<td>8.0</td><td>42</td>}	8.0	42
108	Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization. Polymer, 2015, 63, 1-9.	3.8	42

#	Article	IF	Citations
109	Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO 2 and UV/ZnO photocatalytic systems: A comparative study. Journal of Environmental Management, 2017, 196, 674-680.	7.8	42
110	Platinum electrocatalysts with plasmonic nano-cores for photo-enhanced oxygen-reduction. Nano Energy, 2017, 41, 233-242.	16.0	41
111	Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals. Materials Chemistry and Physics, 2015, 159, 38-45.	4.0	40
112	Photocatalytic degradation of real industrial poultry wastewater via platinum decorated BiVO4/g-C3N4 photocatalyst under solar light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 46-56.	3.9	40
113	Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO4 nanocomposite. Materials Chemistry and Physics, 2021, 271, 124871.	4.0	40
114	A three-way synergy of triple-modified Bi2WO6/Ag/N–TiO2 nanojunction film for enhanced photogenerated charges utilization. Chemical Communications, 2011, 47, 8641.	4.1	39
115	Surface engineered tin foil for electrocatalytic reduction of carbon dioxide to formate. Catalysis Science and Technology, 2017, 7, 2542-2550.	4.1	39
116	C–C Cleavage by Au/TiO ₂ during Ethanol Oxidation: Understanding Bandgap Photoexcitation and Plasmonically Mediated Charge Transfer via Quantitative in Situ DRIFTS. ACS Catalysis, 2016, 6, 8021-8029.	11,2	38
117	3D Heterostructured Copper Electrode for Conversion of Carbon Dioxide to Alcohols at Low Overpotentials. Advanced Sustainable Systems, 2019, 3, 1800064.	5.3	37
118	FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. Journal of Energy Chemistry, 2021, 52, 92-101.	12.9	37
119	Harvesting, Storing and Utilising Solar Energy using MoO ₃ : Modulating Structural Distortion through pH Adjustment. ChemSusChem, 2014, 7, 1934-1941.	6.8	36
120	An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€lon Intercalation Battery. Advanced Energy Materials, 2017, 7, 1700545.	19.5	36
121	Understanding Selfâ€Photorechargeability of WO ₃ for H ₂ Generation without Light Illumination. ChemSusChem, 2013, 6, 291-298.	6.8	35
122	The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23125-23134.	8.0	34
123	Polyurethane sponge facilitating highly dispersed TiO2 nanoparticles on reduced graphene oxide sheets for enhanced photoelectro-oxidation of ethanol. Journal of Materials Chemistry A, 2015, 3, 15675-15682.	10.3	33
124	Superior photoelectrocatalytic performance of ternary structural BiVO4/GQD/g-C3N4 heterojunction. Journal of Colloid and Interface Science, 2021, 586, 785-796.	9.4	32
125	High Sintering Resistance of Platinum Nanoparticles Embedded in a Microporous Hollow Carbon Shell Fabricated Through a Photocatalytic Reaction. Langmuir, 2008, 24, 6307-6312.	3.5	31
126	Decorating platinum on nitrogen-doped graphene sheets: Control of the platinum particle size distribution for improved photocatalytic H2 generation. Chemical Engineering Science, 2019, 194, 85-93.	3.8	31

#	Article	IF	Citations
127	Photocatalytic Route for Synthesis of Hollow Porous Carbon/Pt Nanocomposites with Controllable Density and Porosity. Chemistry of Materials, 2008, 20, 1154-1160.	6.7	30
128	Frequency-regulated pulsed electrodeposition of CuInS ₂ on ZnO nanorod arrays as visible light photoanodes. Journal of Materials Chemistry A, 2015, 3, 15876-15881.	10.3	30
129	In situ construction of elemental phosphorus nanorod-modified TiO2 photocatalysts for efficient visible-light-driven H2 generation. Applied Catalysis B: Environmental, 2021, 297, 120412.	20.2	30
130	Oxygen-deficient bismuth tungstate and bismuth oxide composite photoanode with improved photostability. Science Bulletin, 2018, 63, 990-996.	9.0	29
131	Modulating the Active Sites of Oxygenâ€Deficient TiO ₂ by Copper Loading for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia. Small, 2022, 18, e2200996.	10.0	29
132	Enhanced Visible Light-Induced Charge Separation and Charge Transport in Cu ₂ O-Based Photocathodes by Urea Treatment. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19887-19893.	8.0	27
133	ZnS Thin Films for Visible-Light Active Photoelectrodes: Effect of Film Morphology and Crystal Structure. Crystal Growth and Design, 2016, 16, 2461-2465.	3.0	27
134	Selective Ethanol Oxidation to Acetaldehyde on Nanostructured Zeolitic Imidazolate Frameworkâ€8â€Wrapped ZnO Photothermocatalyst Thin Films. Solar Rrl, 2021, 5, 2000423.	5.8	26
135	Synthesis and characterization of a La Ni/ \hat{l} ±-Al2O3 catalyst and its use in pyrolysis of glycerol to syngas. Renewable Energy, 2019, 132, 1389-1401.	8.9	25
136	Hydrophobic fluorinated TiO2–ZrO2 as catalyst in epoxidation of 1-octene with aqueous hydrogen peroxide. Materials Letters, 2006, 60, 2274-2277.	2.6	24
137	Ab initio study of two-dimensional PdPS as an ideal light harvester and promising catalyst for hydrogen evolution reaction. Materials Today Energy, 2018, 7, 136-140.	4.7	24
138	A CuNi Alloyâ€"Carbon Layer Coreâ€"Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13, 37299-37307.	8.0	24
139	Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO ₂ Reduction toward Valuable Products. ACS Catalysis, 2022, 12, 4792-4805.	11.2	24
140	One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite Solar Cells. Energies, 2016, 9, 1030.	3.1	23
141	Singleâ€Enzyme Biofuel Cells. Angewandte Chemie - International Edition, 2017, 56, 9762-9766.	13.8	23
142	The Dependence of Bi ₂ MoO ₆ Photocatalytic Water Oxidation Capability on Crystal Facet Engineering. ChemPhotoChem, 2019, 3, 1246-1253.	3.0	23
143	Reduced Graphene Oxide: Control of Water Miscibility, Conductivity, and Defects by Photocatalysis. ChemCatChem, 2013, 5, 3060-3067.	3.7	22
144	Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustainable Materials and Technologies, 2018, 18, e00075.	3.3	22

#	Article	IF	CITATIONS
145	Z-Schematic Solar Water Splitting Using Fine Particles of H ₂ -Evolving (CuGa) _{0.5} ZnS ₂ Photocatalyst Prepared by a Flux Method with Chloride Salts. ACS Applied Energy Materials, 2020, 3, 5684-5692.	5.1	22
146	Chemical reduction-induced surface oxygen vacancies of BiVO ₄ photoanodes with enhanced photoelectrochemical performance. Sustainable Energy and Fuels, 2021, 5, 2284-2293.	4.9	21
147	Fabrication of a CulnS ₂ photoelectrode using a single-step electrodeposition with controlled calcination atmosphere. RSC Advances, 2014, 4, 3278-3283.	3.6	20
148	Origin of the High Activity of Porous Carbon-Coated Platinum Nanoparticles for Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2009, 113, 12799-12805.	3.1	19
149	Surface plasmon resonance effect of a Pt-nano-particles-modified TiO2 nanoball overlayer enables a significant enhancement in efficiency to 3.5% for a Cu2ZnSnS4-based thin film photocathode used for solar water splitting. Chemical Engineering Journal, 2020, 396, 125264.	12.7	18
150	Antibacterial Activity of Reduced Graphene Oxide. Journal of Nanomaterials, 2021, 2021, 1-10.	2.7	18
151	A study on the kinetics of syngas production from glycerol over alumina-supported samarium–nickel catalyst. International Journal of Hydrogen Energy, 2016, 41, 10568-10577.	7.1	17
152	Carbonâ€Coated Cu nanoparticles as a Cocatalyst of gâ€C ₃ N ₄ for Enhanced Photocatalytic H ₂ Evolution Activity under Visibleâ€Light Irradiation. Energy Technology, 2019, 7, 1800846.	3.8	17
153	Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches. Energies, 2020, 13, 4250.	3.1	17
154	Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CulnS ₂ for visible light energy conversion. Dalton Transactions, 2015, 44, 7127-7130.	3.3	16
155	Photo-driven synthesis of polymer-coated platinized ZnO nanoparticles with enhanced photoelectrochemical charge transportation. Journal of Materials Chemistry A, 2017, 5, 4568-4575.	10.3	16
156	Plasmon enhanced selective electronic pathways in TiO2 supported atomically ordered bimetallic Au-Cu alloys. Journal of Catalysis, 2017, 352, 638-648.	6.2	16
157	A dual-electrolyte system for photoelectrochemical hydrogen generation using CulnS2-In2O3-TiO2 nanotube array thin film. Science China Materials, 2018, 61, 895-904.	6.3	16
158	Pulsed Electrodeposition of Co ₃ O ₄ Nanocrystals on Oneâ€Dimensional ZnO Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 934-940.	2.8	16
159	Scavenger-free and self-powered photocathodic sensing system for aqueous hydrogen peroxide monitoring by CuO/ZnO nanostructure. Chemical Engineering Science, 2020, 226, 115886.	3.8	16
160	An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angewandte Chemie, 2019, 131, 16967-16970.	2.0	15
161	Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation. Materials Advances, 2022, 3, 2200-2212.	5.4	15
162	Hetero-phase dendritic elemental phosphorus for visible light photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 312, 121428.	20.2	15

#	Article	IF	CITATIONS
163	Interface-dependent electrochemical behavior of nanostructured manganese (IV) oxide (Mn3O4). Electrochimica Acta, 2014, 130, 810-817.	5.2	14
164	Monolithic Integration of Anodic Molybdenum Oxide Pseudocapacitive Electrodes on Screenâ€Printed Silicon Solar Cells for Hybrid Energy Harvestingâ€Storage Systems. Advanced Energy Materials, 2017, 7, 1602325.	19.5	14
165	Concentration-Mediated Band Gap Reduction of Bi ₂ MoO ₆ Photoanodes Prepared by Bi ³⁺ Cation Insertions into Anodized MoO ₃ Thin Films: Structural, Optical, and Photoelectrochemical Properties. ACS Applied Energy Materials, 2018, 1, 3955-3964.	5.1	14
166	Flame-made amorphous solid acids with tunable acidity for the aqueous conversion of glucose to levulinic acid. Green Chemistry, 2020, 22, 688-698.	9.0	14
167	Reversible ternary nickelâ€cobaltâ€iron catalysts for intermittent water electrolysis. EcoMat, 2020, 2, e12012.	11.9	14
168	Mechanism of Incorporation of Zirconium into BiVO ₄ Visible-Light Photocatalyst. Journal of Physical Chemistry C, 2021, 125, 3320-3326.	3.1	14
169	Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing Photoelectrochemical Water Oxidation of Bi ₂ WO ₆ . Small, 2021, 17, e2102023.	10.0	14
170	Resolve deep-rooted challenges of halide perovskite for sustainable energy development and environmental remediation. Nano Energy, 2022, 99, 107401.	16.0	14
171	Surface Modulation Inducing Bismuth-Rich Surface Composition in BiVO ₄ for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2022, 5, 8419-8427.	5.1	14
172	Solar Water Splitting under Neutral Conditions Using Zâ€Scheme Systems with Moâ€Doped BiVO ₄ as an O ₂ â€Evolving Photocatalyst. Energy Technology, 2019, 7, 1900358.	3.8	13
173	Visible-light photocatalysis and charge carrier dynamics of elemental crystalline red phosphorus. Journal of Chemical Physics, 2020, 153, 024707.	3.0	13
174	Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO 2. Journal of Materiomics, 2017, 3, 51-57.	5.7	12
175	Nitrogen Doped Carbon Nanosheets Coupled Nickel–Carbon Pyramid Arrays Toward Efficient Evolution of Hydrogen. Advanced Sustainable Systems, 2017, 1, 1700032.	5.3	12
176	Fabrication of high aspect ratio and openâ€ended TiO ₂ nanotube photocatalytic arrays through electrochemical anodization. AICHE Journal, 2016, 62, 415-420.	3.6	11
177	Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Longâ€lived Charges Applied in Selective Photocatalytic CO ₂ Reduction to CH ₄ . Angewandte Chemie, 2021, 133, 8536-8540.	2.0	11
178	Selective N2/H2O adsorption onto 2D amphiphilic amorphous photocatalysts for ambient gas-phase nitrogen fixation. Applied Catalysis B: Environmental, 2021, 294, 120240.	20.2	10
179	Biphasic epoxidation of 1-octene with H2O2 catalyzed by amphiphilic fluorinated Ti-loaded zirconia. Journal of Fluorine Chemistry, 2007, 128, 12-16.	1.7	9
180	Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes. Beilstein Journal of Nanotechnology, 2014, 5, 895-902.	2.8	9

#	Article	IF	CITATIONS
181	Bio-mimicking TiO ₂ architectures for enhanced photocatalytic activity under UV and visible light. RSC Advances, 2017, 7, 39098-39108.	3.6	9
182	Light soaking effect driven in porphyrin dye-sensitized solar cells using 1D TiO2 nanotube photoanodes. Sustainable Materials and Technologies, 2020, 24, e00165.	3.3	9
183	Cu2O photocatalyst: Activity enhancement driven by concave surface. Materials Today Energy, 2020, 16, 100422.	4.7	9
184	Multipronged Validation of Oxalate C–C Bond Cleavage Driven by Au-TiO ₂ Interfacial Charge Transfer Using Operando DRIFTS. ACS Catalysis, 2018, 8, 7158-7163.	11.2	8
185	Detailed kinetic observation revealing the formation mechanism of chiral mesoporous silica (CMS) synthesized by cooperative self-assembly of anionic chiral surfactant. Materials Research Bulletin, 2015, 62, 192-199.	5.2	7
186	Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 20851-20856.	7.1	7
187	Hydrogen Production: Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures: A Review (Small Methods 1/2019). Small Methods, 2019, 3, 1800053.	8.6	7
188	GaP–ZnS Multilayer Films: Visible-Light Photoelectrodes by Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 3336-3342.	3.1	7
189	Photocatalytic generation of hydrogen coupled with in-situ hydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 28521-28526.	7.1	7
190	Facet-dependent spatial charge separation with rational cocatalyst deposition on BiVO4. Materials Today Energy, 2022, 26, 100986.	4.7	6
191	Green synthesis of graphite-based photo-Fenton nanocatalyst from waste tar via a self-reduction and solvent-free strategy. Science of the Total Environment, 2022, 824, 153772.	8.0	6
192	Efficient Reductive Alkylation of Aniline with Acetone over Pt Nanoparticles Encapsulated in Hollow Porous Carbon. Chemistry Letters, 2008, 37, 948-949.	1.3	5
193	Interfacial origins of visible-light photocatalytic activity in ZnS–GaP multilayers. Acta Materialia, 2019, 181, 139-147.	7.9	5
194	Balancing the crystallinity and specific surface area of bismuth tungstate for photocatalytic water oxidation. Molecular Catalysis, 2020, 487, 110887.	2.0	5
195	Coupled porosity and heterojunction engineering: MOF-derived porous Co3O4 embedded on TiO2 nanotube arrays for water remediation. Chemosphere, 2021, 274, 129799.	8.2	5
196	Singleâ€Enzyme Biofuel Cells. Angewandte Chemie, 2017, 129, 9894-9898.	2.0	4
197	ZnS-GaP Solid Solution Thin Films with Enhanced Visible-Light Photocurrent. ACS Applied Energy Materials, 0, , .	5.1	4
198	Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@Cu-MOF-74 thin film. ChemPhysMater, 2023, 2, 126-133.	2.8	4

#	Article	IF	Citations
199	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	6.8	3
200	Modulating the Active Sites of Oxygenâ€Deficient TiO ₂ by Copper Loading for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia (Small 25/2022). Small, 2022, 18, .	10.0	3
201	Future Energy Technology: Enabling New Science for a Sustainable Future. ChemPlusChem, 2018, 83, 890-892.	2.8	2
202	Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing Photoelectrochemical Water Oxidation of Bi ₂ WO ₆ (Small 35/2021). Small, 2021, 17, 2170183.	10.0	2
203	Morphological Control of Carbon Carrier in Pt–Carbon Nanocomposites Derived from Photocatalytic Reactions on Titanium(IV) Oxide Powders. Topics in Catalysis, 2009, 52, 627-633.	2.8	1
204	Impact of Cu oxidation state on photocatalytic H2 production by Cu/TiO <inf>2</inf> . , 2014, , .		1
205	Nanorods: Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2 O2 Production (Adv.) Tj ETQq1 1	0.784314 21.0	rgBT /Overlo
206	Batteries: An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€lon Intercalation Battery (Adv. Energy Mater. 19/2017). Advanced Energy Materials, 2017, 7, .	19.5	1
207	<i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.	5.9	1
208	Investigating the preparation parameters during the synthesis of CulnS <inf>2</inf> thin film photoelectrodes. , 2014, , .		0
209	Photocatalysis: Interfacing BiVO ₄ with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling (Small 38/2016). Small, 2016, 12, 5232-5232.	10.0	0
210	Tiny Particles with Big Impacts on Clean Future Energy. Particle and Particle Systems Characterization, 2017, 34, 1700102.	2.3	0
211	Pulsed Electrodeposition of Co3 O4 Nanocrystals on One-Dimensional ZnO Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 889-889.	2.8	O
212	Cocatalysts on Semiconductor Photocatalyst: A Mini Review. Journal of the Indonesian Chemical Society, 2019, 2, 72.	0.3	0