Lu An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1984358/publications.pdf

Version: 2024-02-01

		759233	642732
35	592	12	23 g-index
papers	citations	h-index	g-index
26	26	26	562
36	36	36	563
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Additive Manufacturing of Porous Ceramics With Foaming Agent. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	2.2	7
2	Flame aerosol synthesis of hollow alumina nanoshells for application in thermal insulation. Chemical Engineering Journal, 2022, 428, 131273.	12.7	11
3	Printing Air-Stable High-Tc Molecular Magnet with Tunable Magnetic Interaction. Nano Letters, 2022, 22, 545-553.	9.1	4
4	Scalable and robust silica aerogel materials from ambient pressure drying. Materials Advances, 2022, 3, 2726-2736.	5.4	7
5	Nanoengineering Porous Silica for Thermal Management. ACS Applied Nano Materials, 2022, 5, 2655-2663.	5.0	12
6	Copper Nanoplates for Printing Flexible High-Temperature Conductors. ACS Applied Nano Materials, 2022, 5, 4028-4037.	5.0	13
7	A predictive multiphase model of silica aerogels for building envelope insulations. Computational Mechanics, 2022, 69, 1457-1479.	4.0	2
8	High temperature ceramic thermal insulation material. Nano Research, 2022, 15, 6662-6669.	10.4	12
9	Printed copper-nanoplate conductor for electro-magnetic interference. Nanotechnology, 2022, 33, 115601.	2.6	2
10	Wearable Aramid–Ceramic Aerogel Composite for Harsh Environment. Advanced Engineering Materials, 2021, 23, 2001169.	3.5	20
11	Printable and flexible wireless oxygen sensor. Engineering Research Express, 2021, 3, 015021.	1.6	1
12	Cross-Linking and Charging Molecular Magnetoelectronics. Nano Letters, 2021, 21, 4099-4105.	9.1	6
13	Reflective Paint Consisting of Mesoporous Silica Aerogel and Titania Nanoparticles for Thermal Management. ACS Applied Nano Materials, 2021, 4, 6357-6363.	5. 0	17
14	Two-Dimensional Conductive π–d Frameworks with Multiple Sensory Capabilities. ACS Applied Materials & Interfaces, 2021, 13, 28703-28709.	8.0	5
15	Solution-shearing of dielectric polymer with high thermal conductivity and electric insulation. Science Advances, 2021, 7, eabi7410.	10.3	24
16	Cu-based metal–organic frameworks for highly sensitive X-ray detectors. Chemical Communications, 2021, 57, 8612-8615.	4.1	7
17	Cost-Effective Additive Manufacturing of Ambient Pressure-Dried Silica Aerogel. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2.2	28
18	A Hierarchical Mesoporous Insulation Ceramic. Nano Letters, 2020, 20, 1110-1116.	9.1	38

#	Article	IF	Citations
19	Hierarchical Structural Engineering of Ultrahigh-Molecular-Weight Polyethylene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50024-50032.	8.0	5
20	A scalable crosslinked fiberglass-aerogel thermal insulation composite. Applied Materials Today, 2020, 21, 100843.	4.3	31
21	Emerging Magnetic Interactions in van der Waals Heterostructures. Nano Letters, 2020, 20, 7852-7859.	9.1	5
22	Transparent and Flexible Thermal Insulation Window Material. Cell Reports Physical Science, 2020, 1, 100140.	5.6	12
23	Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer. Acta Metallurgica Sinica (English Letters), 2020, 33, 1252-1258.	2.9	5
24	Ductile cooling phase change material. Nanoscale Advances, 2020, 2, 3900-3905.	4.6	7
25	Electron transfer induced magnetic ordering of metal-cyanide magnets. Materials Advances, 2020, 1, 1061-1065.	5.4	3
26	A macromolecular assembly directed ceramic aerogel monolith material. Journal of Materials Chemistry C, 2020, 8, 10319-10324.	5.5	7
27	Printable Copper Sensor Electronics for High Temperature. ACS Applied Electronic Materials, 2020, 2, 1867-1873.	4.3	37
28	Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability. Chemical Communications, 2020, 56, 2332-2335.	4.1	12
29	All-Printed Conformal High-Temperature Electronics on Flexible Ceramics. ACS Applied Electronic Materials, 2020, 2, 556-562.	4.3	11
30	Eutectic crystallized FePd nanoparticles for liquid metal magnet. Chemical Communications, 2020, 56, 6555-6558.	4.1	11
31	An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material. Nano Letters, 2020, 20, 3828-3835.	9.1	79
32	Magnetically hard ferrite nanoparticles synthesized through aerogel nanoreactor. Nanotechnology, 2020, 31, 465606.	2.6	0
33	Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel. Chemical Engineering Journal, 2019, 373, 857-869.	12.7	56
34	Effect of nanoparticle size on the mechanical properties of nanoparticle assemblies. Nanoscale, 2019, 11, 9563-9573.	5.6	50
35	Acoustic emission signal processing framework to identify fracture in aluminum alloys. Engineering Fracture Mechanics, 2019, 210, 367-380.	4.3	42