
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1983175/publications.pdf Version: 2024-02-01

KENNETH M MEDZ ID

#	Article	IF	CITATIONS
1	A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 1995, 117, 5179-5197.	6.6	12,116
2	The Amber biomolecular simulation programs. Journal of Computational Chemistry, 2005, 26, 1668-1688.	1.5	7,742
3	Atomic charges derived from semiempirical methods. Journal of Computational Chemistry, 1990, 11, 431-439.	1.5	3,004
4	Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, 2000, 43, 3867-3877.	2.9	1,254
5	Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. Journal of Chemical Theory and Computation, 2013, 9, 2733-2748.	2.3	559
6	MCPB.py: A Python Based Metal Center Parameter Builder. Journal of Chemical Information and Modeling, 2016, 56, 599-604.	2.5	416
7	Structural Survey of Zinc-Containing Proteins and Development of the Zinc AMBER Force Field (ZAFF). Journal of Chemical Theory and Computation, 2010, 6, 2935-2947.	2.3	378
8	Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. Journal of Chemical Theory and Computation, 2015, 11, 1645-1657.	2.3	334
9	Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems. Accounts of Chemical Research, 1999, 32, 904-911.	7.6	325
10	Assessment of the "6-31+G** + LANL2DZ―Mixed Basis Set Coupled with Density Functional Theory Methods and the Effective Core Potential: Prediction of Heats of Formation and Ionization Potentials for First-Row-Transition-Metal Complexes. Journal of Physical Chemistry A, 2009, 113, 9843-9851.	1.1	313
11	Taking into Account the Ion-Induced Dipole Interaction in the Nonbonded Model of Ions. Journal of Chemical Theory and Computation, 2014, 10, 289-297.	2.3	305
12	Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties. Journal of Chemical Theory and Computation, 2007, 3, 407-433.	2.3	295
13	High throughput docking for library design and library prioritization. Proteins: Structure, Function and Bioinformatics, 2001, 43, 113-124.	1.5	283
14	d10-d10 Interactions: multinuclear copper(I) complexes. Inorganic Chemistry, 1988, 27, 2120-2127.	1.9	272
15	Metal Ion Modeling Using Classical Mechanics. Chemical Reviews, 2017, 117, 1564-1686.	23.0	266
16	Force field design for metalloproteins. Journal of the American Chemical Society, 1991, 113, 8262-8270.	6.6	265
17	Semiempirical molecular orbital calculations with linear system size scaling. Journal of Chemical Physics, 1996, 104, 6643-6649.	1.2	258
18	Parameterization of Highly Charged Metal lons Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water. Journal of Physical Chemistry B, 2015, 119, 883-895.	1.2	237

#	Article	IF	CITATIONS
19	The role of quantum mechanics in structure-based drug design. Drug Discovery Today, 2007, 12, 725-731.	3.2	226
20	Prediction of Aqueous Solubility of a Diverse Set of Compounds Using Quantitative Structureâ^`Property Relationships. Journal of Medicinal Chemistry, 2003, 46, 3572-3580.	2.9	211
21	Fast, accurate semiempirical molecular orbital calculations for macromolecules. Journal of Chemical Physics, 1997, 107, 879-893.	1.2	208
22	Large-Scale Validation of a Quantum Mechanics Based Scoring Function:Â Predicting the Binding Affinity and the Binding Mode of a Diverse Set of Proteinâ^Ligand Complexes. Journal of Medicinal Chemistry, 2005, 48, 4558-4575.	2.9	193
23	A comparison of DMPC- and DLPE-based lipid bilayers. Biophysical Journal, 1994, 66, 1076-1087.	0.2	163
24	Carbon dioxide binding to human carbonic anhydrase II. Journal of the American Chemical Society, 1991, 113, 406-411.	6.6	160
25	Insights into the Strength and Origin of Halogen Bonding:Â The Halobenzeneâ^'Formaldehyde Dimer. Journal of Physical Chemistry A, 2007, 111, 1688-1694.	1.1	157
26	A Quantum Mechanics-Based Scoring Function:  Study of Zinc Ion-Mediated Ligand Binding. Journal of the American Chemical Society, 2004, 126, 1020-1021.	6.6	150
27	Application of the Noséâ^'Hoover Chain Algorithm to the Study of Protein Dynamics. The Journal of Physical Chemistry, 1996, 100, 1927-1937.	2.9	149
28	Computer modeling of the interactions of complex molecules. Accounts of Chemical Research, 1990, 23, 246-252.	7.6	146
29	Calculation of solvation free energies using a density functional/molecular dynamics coupled potential. The Journal of Physical Chemistry, 1993, 97, 11868-11870.	2.9	146
30	Free energy perturbation simulations of the inhibition of thermolysin: prediction of the free energy of binding of a new inhibitor. Journal of the American Chemical Society, 1989, 111, 5649-5658.	6.6	145
31	Using AMBER18 for Relative Free Energy Calculations. Journal of Chemical Information and Modeling, 2019, 59, 3128-3135.	2.5	138
32	Density functional transition states of organic and organometallic reactions. Journal of Chemical Physics, 1994, 100, 434-443.	1.2	135
33	A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews, 2021, 50, 9121-9151.	18.7	128
34	Formal Estimation of Errors in Computed Absolute Interaction Energies of Proteinâ^'Ligand Complexes. Journal of Chemical Theory and Computation, 2011, 7, 790-797.	2.3	127
35	The mode of action of carbonic anhydrase. Journal of the American Chemical Society, 1989, 111, 5636-5649.	6.6	126
36	Divide and Conquer Hartreeâ^'Fock Calculations on Proteins. Journal of Chemical Theory and Computation, 2010, 6, 405-411.	2.3	124

#	Article	IF	CITATIONS
37	Free energy calculations on protein stability: Thr-157 .fwdarw. Val-157 mutation of T4 lysozyme. Journal of the American Chemical Society, 1989, 111, 8505-8508.	6.6	123
38	Rapid approximation to molecular surface area via the use of Boolean logic and look-up tables. Journal of Computational Chemistry, 1993, 14, 349-352.	1.5	123
39	A force field for monosaccharides and (1 ? 4) linked polysaccharides. Journal of Computational Chemistry, 1994, 15, 1019-1040.	1.5	121
40	Solvent Dynamics and Mechanism of Proton Transfer in Human Carbonic Anhydrase II. Journal of the American Chemical Society, 1999, 121, 2290-2302.	6.6	120
41	Analysis of a large data base of electrostatic potential derived atomic charges. Journal of Computational Chemistry, 1992, 13, 749-767.	1.5	114
42	Study of hydrogen bonding interactions relevant to biomolecular structure and function. Journal of Computational Chemistry, 1992, 13, 1151-1169.	1.5	114
43	3,4-Connected carbon nets: through-space and through-bond interactions in the solid state. Journal of the American Chemical Society, 1987, 109, 6742-6751.	6.6	113
44	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	2.9	113
45	Explicitly Representing the Solvation Shell in Continuum Solvent Calculations. Journal of Physical Chemistry A, 2009, 113, 6404-6409.	1.1	112
46	Mechanism of the human carbonic anhydrase II-catalyzed hydration of carbon dioxide. Journal of the American Chemical Society, 1992, 114, 10498-10507.	6.6	108
47	Quantum Crystallography: Current Developments and Future Perspectives. Chemistry - A European Journal, 2018, 24, 10881-10905.	1.7	108
48	Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. Biochemistry, 1992, 31, 7656-7664.	1.2	103
49	Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases. Journal of Molecular Biology, 1990, 214, 799-802.	2.0	102
50	Head group-water interactions in lipid bilayers: a comparison between DMPC- and DLPE-based lipid bilayers. Langmuir, 1993, 9, 1179-1183.	1.6	101
51	Free Energy Perturbation Study of Octanol/Water Partition Coefficients:  Comparison with Continuum GB/SA Calculations. Journal of Physical Chemistry B, 1999, 103, 714-726.	1.2	100
52	Hybrid QM/MM and DFT Investigations of the Catalytic Mechanism and Inhibition of the Dinuclear Zinc Metallo-β-Lactamase CcrA fromBacteroidesfragilis. Journal of the American Chemical Society, 2005, 127, 4232-4241.	6.6	100
53	X-ray diffraction "fingerprinting" of DNA structure in solution for quantitative evaluation of molecular dynamics simulation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3534-3539.	3.3	100
54	Ice-binding mechanism of winter flounder antifreeze proteins. Biophysical Journal, 1997, 73, 2851-2873.	0.2	98

#	Article	IF	CITATIONS
55	An examination of a density functional/molecular mechanical coupled potential. Journal of Computational Chemistry, 1995, 16, 113-128.	1.5	96
56	The Role of Polarization and Charge Transfer in the Solvation of Biomolecules. Journal of the American Chemical Society, 1999, 121, 9182-9190.	6.6	96
57	Protein dynamics and solvation in aqueous and nonaqueous environments. Journal of the American Chemical Society, 1993, 115, 6529-6537.	6.6	95
58	Assessment of Density Functional Theory Methods for the Computation of Heats of Formation and Ionization Potentials of Systems Containing Third Row Transition Metals. Journal of Physical Chemistry A, 2007, 111, 6044-6053.	1.1	94
59	Fully Quantum Mechanical Description of Proteins in Solution. Combining Linear Scaling Quantum Mechanical Methodologies with the Poissonâ^'Boltzmann Equation. Journal of Physical Chemistry A, 1999, 103, 5171-5188.	1.1	91
60	One-Dimensional Molecular Representations and Similarity Calculations:Â Methodology and Validation. Journal of Medicinal Chemistry, 2001, 44, 3795-3809.	2.9	90
61	Protein NMR Chemical Shift Calculations Based on the Automated Fragmentation QM/MM Approach. Journal of Physical Chemistry B, 2009, 113, 10380-10388.	1.2	90
62	Assigning the Protonation States of the Key Aspartates in \hat{l}^2 -Secretase Using QM/MM X-ray Structure Refinement. Journal of Chemical Theory and Computation, 2006, 2, 1057-1069.	2.3	89
63	New developments in applying quantum mechanics to proteins. Current Opinion in Structural Biology, 2001, 11, 217-223.	2.6	88
64	Using Quantum Mechanical Approaches to Study Biological Systems. Accounts of Chemical Research, 2014, 47, 2804-2811.	7.6	86
65	Charge-Transfer Interactions in Macromolecular Systems:  A New View of the Protein/Water Interface. Journal of the American Chemical Society, 1998, 120, 5593-5594.	6.6	84
66	Zinc Metallo-β-Lactamase from Bacteroides fragilis:  A Quantum Chemical Study on Model Systems of the American Chemical Society, 2000, 122, 4197-4208.	6.6	84
67	Divide and Conquer Interaction Energy Decomposition. Journal of Physical Chemistry A, 1999, 103, 3321-3329.	1.1	83
68	Limits of Free Energy Computation for Proteinâ^'Ligand Interactions. Journal of Chemical Theory and Computation, 2010, 6, 1769-1776.	2.3	83
69	Ureases:  Quantum Chemical Calculations on Cluster Models. Journal of the American Chemical Society, 2003, 125, 15324-15337.	6.6	82
70	Further analysis and comparative study of intermolecular interactions using dimers from the S22 database. Journal of Chemical Physics, 2009, 131, 065102.	1.2	82
71	The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. Journal of Chemical Physics, 2017, 147, 161727.	1.2	82
72	Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Information and Modeling, 2021, 61, 869-880.	2.5	81

#	Article	IF	CITATIONS
73	Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method. Journal of Computational Chemistry, 2000, 21, 1494-1504.	1.5	80
74	The Hydrolysis of Urea and the Proficiency of Urease. Journal of the American Chemical Society, 2004, 126, 6932-6944.	6.6	78
75	Mixed Quantum Mechanics/Molecular Mechanics Scoring Function To Predict Proteinâ^'Ligand Binding Affinity. Journal of Chemical Theory and Computation, 2010, 6, 3079-3091.	2.3	78
76	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	5.3	78
77	Binding of Bicarbonate to Human Carbonic Anhydrase II:Â A Continuum of Binding States. Journal of the American Chemical Society, 1997, 119, 863-871.	6.6	77
78	Quantum mechanical/quantum mechanical methods. I. A divide and conquer strategy for solving the Schrödinger equation for large molecular systems using a composite density functional–semiempirical Hamiltonian. Journal of Chemical Physics, 2000, 113, 5604-5613.	1.2	77
79	Molecular Dynamics Study of Ethanolamine as a Pure Liquid and in Aqueous Solution. Journal of Physical Chemistry B, 2007, 111, 3695-3703.	1.2	77
80	Molecular Dynamics Simulations of the Mononuclear Zinc-β-lactamase fromBacillus Cereus. Journal of the American Chemical Society, 2001, 123, 3759-3770.	6.6	75
81	Molecular Dynamics Study of the IIA Binding Site in Human Serum Albumin:Â Influence of the Protonation State of Lys195 and Lys199. Journal of Medicinal Chemistry, 2001, 44, 250-260.	2.9	74
82	Insights into the Structure and Dynamics of the Dinuclear Zinc β-Lactamase Site fromBacteroides fragilisâ€. Biochemistry, 2002, 41, 6615-6630.	1.2	74
83	AM1 parameters for zinc. Organometallics, 1988, 7, 522-524.	1.1	70
84	Novel Acyclic Diaminocarbene Ligands with Increased Steric Demand and Their Application in Gold Catalysis. Organic Letters, 2010, 12, 4860-4863.	2.4	70
85	Importance of Dispersion and Electron Correlation in ab Initio Protein Folding. Journal of Physical Chemistry B, 2009, 113, 5290-5300.	1.2	67
86	Molecular Dynamics Simulations of the Mononuclear Zinc-β-lactamase fromBacilluscereusComplexed with Benzylpenicillin and a Quantum Chemical Study of the Reaction Mechanism. Journal of the American Chemical Society, 2001, 123, 9867-9879.	6.6	66
87	Evolution of Alchemical Free Energy Methods in Drug Discovery. Journal of Chemical Information and Modeling, 2020, 60, 5308-5318.	2.5	66
88	Gas-phase and solution-phase potential energy surfaces for carbon dioxide + n-water (n = 1,2). Journal of the American Chemical Society, 1990, 112, 7973-7980.	6.6	64
89	Determination of pKas of ionizable groups in proteins: the pKa of Glu 7 and 35 in hen eggs white lysozyme and Glu 106 in human carbonic anhydrase II. Journal of the American Chemical Society, 1991, 113, 3572-3575.	6.6	64
90	Disruption of the Active Site Solvent Network in Carbonic Anhydrase II Decreases the Efficiency of Proton Transferâ€. Biochemistry, 1996, 35, 16421-16428.	1.2	64

#	Article	IF	CITATIONS
91	Stability and Activity of Mesophilic Subtilisin E and Its Thermophilic Homolog:  Insights from Molecular Dynamics Simulations. Journal of the American Chemical Society, 1999, 121, 6895-6903.	6.6	64
92	Are Many-Body Effects Important in Protein Folding?. Journal of Physical Chemistry B, 2000, 104, 9554-9563.	1.2	64
93	Dynamic Force Field Models: Molecular Dynamics Simulations of Human Carbonic Anhydrase II Using a Quantum Mechanical/Molecular Mechanical Coupled Potential. The Journal of Physical Chemistry, 1995, 99, 11266-11275.	2.9	63
94	Mass spectral and computational free energy studies of alkali metal ion-containing water clusters. The Journal of Physical Chemistry, 1995, 99, 7829-7836.	2.9	62
95	Charge transfer in small hydrogen bonded clusters. Journal of Chemical Physics, 2002, 116, 7380-7388.	1.2	62
96	A Fast QM/MM (Quantum Mechanical/Molecular Mechanical) Approach to Calculate Nuclear Magnetic Resonance Chemical Shifts for Macromolecules. Journal of Chemical Theory and Computation, 2006, 2, 209-215.	2.3	62
97	Insights into the Acylation Mechanism of Class A β-Lactamases from Molecular Dynamics Simulations of the TEM-1 Enzyme Complexed with Benzylpenicillin. Journal of the American Chemical Society, 2003, 125, 672-684.	6.6	61
98	Simulation of Liquid Water Using Semiempirical Hamiltonians and the Divide and Conquer Approach. Journal of Physical Chemistry A, 2005, 109, 3425-3432.	1.1	60
99	Tunneling dynamics of cyclobutadiene. Journal of the American Chemical Society, 1984, 106, 4040-4041.	6.6	59
100	GB/SA water model for the Merck molecular force field (MMFF). Journal of Molecular Graphics and Modelling, 2000, 18, 273-282.	1.3	59
101	Protein flexibility in aqueous and nonaqueous solutions. Journal of the American Chemical Society, 1992, 114, 10113-10116.	6.6	58
102	Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Theory and Computation, 2020, 16, 4429-4442.	2.3	58
103	Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations. Journal of Chemical Theory and Computation, 2013, 9, 965-976.	2.3	57
104	Computation of the physio-chemical properties and data mining of large molecular collections. Journal of Computational Chemistry, 2002, 23, 172-183.	1.5	56
105	Inhibition of carbonic anhydrase. Journal of the American Chemical Society, 1991, 113, 4484-4490.	6.6	55
106	The application of the genetic algorithm to the minimization of potential energy functions. Journal of Global Optimization, 1993, 3, 49-66.	1.1	55
107	Quantum mechanical and molecular dynamics simulations of ureases and Zn β-lactamases. Journal of Computational Chemistry, 2006, 27, 1240-1262.	1.5	55
108	Molecular Recognition of K+ and Na+ by Valinomycin in Methanol. Journal of the American Chemical Society, 1995, 117, 779-791.	6.6	54

#	Article	IF	CITATIONS
109	Molecular dynamics simulations of lipid bilayers. Current Opinion in Structural Biology, 1997, 7, 511-517.	2.6	54
110	Ionic Conduction in Polyphosphazene Solids and Gels:Â13C,31P, and15N NMR Spectroscopy and Molecular Dynamics Simulations. Macromolecules, 1999, 32, 732-741.	2.2	54
111	Competitive Hydrolytic and Elimination Mechanisms in the Urease Catalyzed Decomposition of Urea. Journal of Physical Chemistry B, 2007, 111, 10263-10274.	1.2	53
112	Insight into the Cationâ^ï€ Interaction at the Metal Binding Site of the Copper Metallochaperone CusF. Journal of the American Chemical Society, 2011, 133, 19330-19333.	6.6	53
113	Molecular dynamics simulations of the dinuclear zinc-β-lactamase from Bacteroides fragilis complexed with imipenem. Journal of Computational Chemistry, 2002, 23, 1587-1600.	1.5	52
114	Insights into Cu(I) Exchange in HAH1 Using Quantum Mechanical and Molecular Simulations. Biochemistry, 2007, 46, 8816-8826.	1.2	52
115	QM/MM X-ray refinement of zinc metalloenzymes. Journal of Inorganic Biochemistry, 2010, 104, 512-522.	1.5	52
116	Potential of Mean Force Calculations on the SN1 Fragmentation of tert-Butyl Chloride. The Journal of Physical Chemistry, 1995, 99, 384-390.	2.9	51
117	Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 322-332.	2.5	51
118	MNDO calculations for compounds containing mercury. Organometallics, 1985, 4, 1964-1966.	1.1	50
119	Ground states of molecules. Part 84. MNDO calculations for compounds containing zinc. Organometallics, 1986, 5, 1494-1496.	1.1	50
120	Theoretical investigation of the CO2 + OHfwdarw. HCO3- reaction in the gas and aqueous phases. Journal of the American Chemical Society, 1993, 115, 9640-9647.	6.6	50
121	An Examination of a Hartree-Fock/Molecular Mechanical Coupled Potential. The Journal of Physical Chemistry, 1995, 99, 17344-17348.	2.9	50
122	Enzymatic Catalysis of Urea Decomposition:Â Elimination or Hydrolysis?. Journal of the American Chemical Society, 2004, 126, 11832-11842.	6.6	50
123	Rationalization of the Enantioselectivity of Subtilisin in DMF. Journal of the American Chemical Society, 1999, 121, 3486-3493.	6.6	49
124	Molecular recognition of potassium ion by the naturally occurring antibiotic ionophore nonactin. Journal of the American Chemical Society, 1992, 114, 7542-7549.	6.6	48
125	Effects of Fluorine Substitution on the Edge-to-Face Interaction of the Benzene Dimer. Journal of Physical Chemistry B, 2005, 109, 17752-17756.	1.2	48
126	Development of the Knowledge-Based and Empirical Combined Scoring Algorithm (KECSA) To Score Protein–Ligand Interactions. Journal of Chemical Information and Modeling, 2013, 53, 1073-1083.	2.5	48

#	Article	IF	CITATIONS
127	The Energy Computation Paradox and ab initio Protein Folding. PLoS ONE, 2011, 6, e18868.	1.1	48
128	Accurate assessment of the strain energy in a proteinâ€bound drug using QM/MM Xâ€ray refinement and converged quantum chemistry. Journal of Computational Chemistry, 2011, 32, 2587-2597.	1.5	47
129	Quantum Chemistry Calculations for Metabolomics. Chemical Reviews, 2021, 121, 5633-5670.	23.0	47
130	Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program <i>DivCon</i> into the <i>PHENIX</i> refinement package. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1233-1247.	2.5	46
131	Hydration of zinc ions: theoretical study of [Zn(H2O)4](H2O)82+ and [Zn(H2O)6](H2O)62+. Chemical Physics Letters, 2000, 326, 288-292.	1.2	45
132	Critical assessment of the performance of the semiempirical divide and conquer method for single point calculations and geometry optimizations of large chemical systems. Journal of Chemical Physics, 2000, 113, 10512-10523.	1.2	45
133	Computational Studies of the Farnesyltransferase Ternary Complex Part I: Substrate Bindingâ€. Biochemistry, 2005, 44, 16513-16523.	1.2	45
134	The Reformatskii reaction. Journal of the American Chemical Society, 1987, 109, 6553-6554.	6.6	44
135	Free energy calculations on the relative solvation free energies of benzene, anisole, and 1,2,3-trimethoxybenzene: theoretical and experimental analysis of aromatic methoxy solvation. The Journal of Physical Chemistry, 1991, 95, 6661-6666.	2.9	44
136	Wide-Open Flaps Are Key to Urease Activity. Journal of the American Chemical Society, 2012, 134, 9934-9937.	6.6	44
137	Utility of the Hard/Soft Acidâ^'Base Principle via the Fukui Function in Biological Systems. Journal of Chemical Theory and Computation, 2010, 6, 548-559.	2.3	43
138	Binding Preferences of Hydroxamate Inhibitors of the Matrix Metalloproteinase Human Fibroblast Collagenase. Journal of Medicinal Chemistry, 1999, 42, 1225-1234.	2.9	42
139	Acylation of Class A β-lactamases by Penicillins:  A Theoretical Examination of the Role of Serine 130 and the β-lactam Carboxylate Group. Journal of Physical Chemistry B, 2001, 105, 11302-11313.	1.2	42
140	Solution Structure of <i>Mycobacterium tuberculosis</i> NmtR in the Apo State: Insights into Ni(II)-Mediated Allostery. Biochemistry, 2012, 51, 2619-2629.	1.2	42
141	Simulations of Allosteric Motions in the Zinc Sensor CzrA. Journal of the American Chemical Society, 2012, 134, 3367-3376.	6.6	42
142	Critical assessment of quantum mechanics based energy restraints in protein crystal structure refinement. Protein Science, 2006, 15, 2773-2784.	3.1	41
143	Potential energy surfaces and tunneling dynamics of some Jahn-Teller active molecules. The Journal of Physical Chemistry, 1985, 89, 4739-4744.	2.9	40
144	Interaction of small peptides with lipid bilayers. Biophysical Journal, 1995, 69, 1299-1308.	0.2	40

#	Article	IF	CITATIONS
145	Pairwise Decomposition of Residue Interaction Energies Using Semiempirical Quantum Mechanical Methods in Studies of Proteinâ^'Ligand Interaction. Journal of the American Chemical Society, 2005, 127, 6583-6594.	6.6	40
146	Molecular Recognition and Drug-Lead Identification: What Can Molecular Simulations Tell Us?. Current Medicinal Chemistry, 2010, 17, 25-41.	1.2	39
147	Density functional study of symmetric proton transfers. Journal of Chemical Physics, 1994, 101, 6658-6665.	1.2	38
148	Relative Configuration of Natural Products Using NMR Chemical Shifts. Journal of Natural Products, 2009, 72, 709-713.	1.5	38
149	Can we separate active from inactive conformations?. Journal of Computer-Aided Molecular Design, 2002, 16, 105-112.	1.3	37
150	Haptic applications for molecular structure manipulation. Journal of Molecular Graphics and Modelling, 2007, 25, 801-805.	1.3	37
151	Extended Zinc AMBER Force Field (EZAFF). Journal of Chemical Theory and Computation, 2018, 14, 242-254.	2.3	37
152	Conformational preferences for hydroxyl groups in substituted tetrahydropyrans. Journal of Computational Chemistry, 1992, 13, 772-791.	1.5	36
153	Thiosemicarbazones as Aedes aegypti larvicidal. European Journal of Medicinal Chemistry, 2015, 100, 162-175.	2.6	36
154	Determination of Atomic Charges Including solvation and Conformational Effects. The Journal of Physical Chemistry, 1994, 98, 1341-1343.	2.9	35
155	Solvation and Dynamics of Chymotrypsin in Hexane. Journal of the American Chemical Society, 1996, 118, 6490-6498.	6.6	35
156	A Critical Assessment of the Performance of Proteinâ^'Ligand Scoring Functions Based on NMR Chemical Shift Perturbations. Journal of Medicinal Chemistry, 2007, 50, 5128-5134.	2.9	35
157	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	1.3	35
158	The Important Role of Active Site Water in the Catalytic Mechanism of Human Carbonic Anhydrase II ? A Semiempirical MO Approach to the Hydration of CO 2 ?. Journal of Molecular Modeling, 1998, 4, 355-365.	0.8	34
159	Pose Scoring by NMR. Journal of the American Chemical Society, 2004, 126, 11430-11431.	6.6	34
160	Aspects of organotin chemistry. Journal of the American Chemical Society, 1984, 106, 6773-6777.	6.6	33
161	Interaction of the Fusion Inhibiting Peptide Carbobenzoxy-D-Phe-L-Phe-Gly with N-Methyldioleoylphosphatidylethanolamine Lipid Bilayers. Journal of the American Chemical Society, 1995, 117, 6561-6571.	6.6	33
162	The Concept of Solvent Compatibility and Its Impact on Protein Stability and Activity Enhancement in Nonaqueous Solvents. Journal of the American Chemical Society, 1997, 119, 9939-9948.	6.6	33

#	Article	IF	CITATIONS
163	Implementation and Testing of a Frozen Density Matrixâ^'Divide and Conquer Algorithm. Journal of Physical Chemistry A, 1999, 103, 1868-1875.	1.1	33
164	Chapter 9 Calculating Binding Free Energy in Protein–Ligand Interaction. Annual Reports in Computational Chemistry, 2005, 1, 113-130.	0.9	33
165	Catalyzed Decomposition of Urea. Molecular Dynamics Simulations of the Binding of Urea to Urease. Biochemistry, 2006, 45, 4429-4443.	1.2	33
166	Catalytic Mechanism of Aromatic Prenylation by NphB. Biochemistry, 2012, 51, 2606-2618.	1.2	33
167	PM3-compatible zinc parameters optimized for metalloenzyme active sites. Journal of Computational Chemistry, 2004, 25, 1677-1692.	1.5	32
168	Transferability of ion models. The Journal of Physical Chemistry, 1993, 97, 6524-6529.	2.9	31
169	Theoretical examination of the mechanism of aldose–ketose isomerization. Protein Engineering, Design and Selection, 1993, 6, 479-484.	1.0	31
170	Sodium Parameters for AM1 and PM3 Optimized Using a Modified Genetic Algorithm. Journal of Physical Chemistry B, 2002, 106, 2779-2785.	1.2	31
171	QMQSAR: Utilization of a semiempirical probe potential in a field-based QSAR method. Journal of Computational Chemistry, 2005, 26, 23-34.	1.5	31
172	Force Field Design and Molecular Dynamics Simulations of the Carbapenem- and Cephamycin-Resistant Dinuclear Zinc Metallo-Î ² -lactamase fromBacteroides fragilisand Its Complex with a Biphenyl Tetrazole Inhibitor. Journal of Medicinal Chemistry, 2005, 48, 1630-1637.	2.9	31
173	Semiempirical Comparative Binding Energy Analysis (SE-COMBINE) of a Series of Trypsin Inhibitors. Journal of Chemical Theory and Computation, 2006, 2, 383-399.	2.3	31
174	Computational Studies of the Farnesyltransferase Ternary Complex Part II:  The Conformational Activation of Farnesyldiphosphate. Biochemistry, 2007, 46, 12375-12381.	1.2	31
175	Model for the fast estimation of basis set superposition error in biomolecular systems. Journal of Chemical Physics, 2011, 135, 144110.	1.2	31
176	Molecular Dynamics Study of <i>Helicobacter pylori</i> Urease. Journal of Chemical Theory and Computation, 2014, 10, 1852-1862.	2.3	31
177	Vibrationally assisted tunnelling (VAT) in a 1,5 hydrogen shift?. Journal of the Chemical Society Chemical Communications, 1985, , 166.	2.0	30
178	Quantum Free Energy Perturbation Study within a PM3/MM Coupled Potential. The Journal of Physical Chemistry, 1995, 99, 483-486.	2.9	30
179	Conformational Variability of Benzamidinium-Based Inhibitors. Journal of the American Chemical Society, 2009, 131, 7742-7754.	6.6	30
180	Charge transfer in biologically important molecules: comparison of high-level ab initio and semiempirical methods. International Journal of Quantum Chemistry, 2000, 77, 27-43.	1.0	29

#	Article	IF	CITATIONS
181	Molecular Dynamics Simulations of the TEM-1 Î ² -Lactamase Complexed with Cephalothin. Journal of Medicinal Chemistry, 2005, 48, 780-791.	2.9	29
182	Simulating the Chelate Effect. Journal of the American Chemical Society, 2018, 140, 15166-15169.	6.6	29
183	Binding of Azide to Human Carbonic Anhydrase II:Â The Role Electrostatic Complementarity Plays in Selecting the Preferred Resonance Structure of Azide. The Journal of Physical Chemistry, 1996, 100, 17414-17420.	2.9	28
184	The Movable Type Method Applied to Protein–Ligand Binding. Journal of Chemical Theory and Computation, 2013, 9, 5526-5538.	2.3	28
185	Thermodynamics of Transition Metal Ion Binding to Proteins. Journal of the American Chemical Society, 2020, 142, 6365-6374.	6.6	28
186	Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: A divide-and-conquer approach. Journal of Chemical Physics, 2004, 120, 11392-11400.	1.2	27
187	Finding a Needle in the Haystack: Computational Modeling of Mg ²⁺ Binding in the Active Site of Protein Farnesyltransferase. Biochemistry, 2010, 49, 9658-9666.	1.2	27
188	Reduction of Urease Activity by Interaction with the Flap Covering the Active Site. Journal of Chemical Information and Modeling, 2015, 55, 354-361.	2.5	27
189	Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units. Journal of Chemical Theory and Computation, 2015, 11, 1449-1462.	2.3	27
190	Structure and Dynamics of the N-Terminal Domain of the Cu(I) Binding Protein CusB. Biochemistry, 2013, 52, 6911-6923.	1.2	26
191	Tautomerism in free base porphyrins: the porphyrin potential energy surface. Journal of the Chemical Society Chemical Communications, 1988, , 90.	2.0	25
192	The gas-phase and solution-phase free energy surfaces for carbon dioxide reaction with hydroxide (CO2 + OHfwdarw. HCO3-). Journal of the American Chemical Society, 1992, 114, 2733-2734.	6.6	25
193	The C6H6 potential-energy surface: automerization of benzene. Journal of the Chemical Society Chemical Communications, 1993, , 412.	2.0	25
194	Computational prediction of the three-dimensional structures for the Caenorhabditis elegans tubulin family. Journal of Molecular Graphics and Modelling, 1999, 17, 90-100.	1.3	25
195	Ligand Identification Scoring Algorithm (LISA). Journal of Chemical Information and Modeling, 2011, 51, 1296-1306.	2.5	25
196	Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program. Journal of Chemical Theory and Computation, 2020, 16, 4315-4326.	2.3	25
197	A highly portable parallel implementation of AMBER4 using the message passing interface standard. Journal of Computational Chemistry, 1995, 16, 1420-1427.	1.5	24
198	Molecular Dynamics and Quantum Chemical Studies on the Catalytic Mechanism of Δ5-3-Ketosteroid Isomerase:Â The Catalytic Diad versus the Cooperative Hydrogen Bond Mechanism. Journal of the American Chemical Society, 2003, 125, 901-911.	6.6	24

#	Article	IF	CITATIONS
199	The Effects of Computational Modeling Errors on the Estimation of Statistical Mechanical Variables. Journal of Chemical Theory and Computation, 2012, 8, 3769-3776.	2.3	24
200	Conformational Analysis and Parallel QM/MM X-ray Refinement of Protein Bound Anti-Alzheimer Drug Donepezil. Journal of Chemical Theory and Computation, 2013, 9, 1686-1693.	2.3	24
201	Energetics of Zinc-Mediated Interactions in the Allosteric Pathways of Metal Sensor Proteins. Journal of the American Chemical Society, 2013, 135, 30-33.	6.6	24
202	The C10H8 potential energy surface: the azulene-to-naphthalene rearrangement. Journal of the American Chemical Society, 1986, 108, 5142-5145.	6.6	23
203	A Theoretical Study of the Aminolysis Reaction of Lysine 199 of Human Serum Albumin with Benzylpenicillin:Â Consequences for Immunochemistry of Penicillins. Journal of the American Chemical Society, 2001, 123, 7574-7583.	6.6	23
204	Assessment of Semiempirical Quantum Mechanical Methods for the Evaluation of Protein Structures. Journal of Chemical Theory and Computation, 2007, 3, 1609-1619.	2.3	23
205	Interaction energy decomposition in protein–protein association: A quantum mechanical study of barnase–barstar complex. Biophysical Chemistry, 2007, 125, 221-236.	1.5	23
206	Calculation of Heats of Formation for Zn Complexes: Comparison of Density Functional Theory, Second Order Perturbation Theory, Coupled-Cluster and Complete Active Space Methods. Journal of Chemical Theory and Computation, 2013, 9, 5277-5285.	2.3	23
207	Parametrization of Trivalent and Tetravalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Theory and Computation, 2021, 17, 2342-2354.	2.3	23
208	A carbohydrate force field for amber and its application to the study of saccharide to surface adsorption. Computational and Theoretical Chemistry, 1997, 395-396, 157-171.	1.5	22
209	Role of Solvation in the Energy Stabilization Inside the Hydrophobic Core of the Protein Rubredoxin. Journal of Physical Chemistry B, 2006, 110, 15650-15653.	1.2	22
210	Understanding the Substrate Selectivity and the Product Regioselectivity of Orf2-Catalyzed Aromatic Prenylationsâ€. Biochemistry, 2007, 46, 1303-1311.	1.2	22
211	Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods. Journal of Biomolecular NMR, 2013, 56, 125-137.	1.6	22
212	Editorial: Method and Data Sharing and Reproducibility of Scientific Results. Journal of Chemical Information and Modeling, 2020, 60, 5868-5869.	2.5	22
213	GB/SA-Based Continuum Solvation Model for Octanol. Journal of Physical Chemistry B, 1997, 101, 10479-10487.	1.2	21
214	Exploring the Role of the Active Site Cysteine in Human Muscle Creatine Kinaseâ€. Biochemistry, 2006, 45, 11464-11472.	1.2	21
215	Using Ligand-Induced Protein Chemical Shift Perturbations To Determine Protein–Ligand Structures. Biochemistry, 2017, 56, 2349-2362.	1.2	21
216	The question of heavy atom tunneling in the 2-norbornyl cation. Journal of the American Chemical Society, 1986, 108, 5634-5635.	6.6	20

#	Article	IF	CITATIONS
217	Thermal rearrangements of C10H8 species; benzvalene analogs and the automerization of naphthalene. Journal of the American Chemical Society, 1986, 108, 5146-5153.	6.6	20
218	An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method. Journal of Physical Chemistry Letters, 2012, 3, 2604-2610.	2.1	20
219	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	2.5	20
220	Quantum mechanics in structure-based drug design. Current Opinion in Drug Discovery & Development, 2006, 9, 370-9.	1.9	20
221	Mechanism of the azulene to naphthalene rearrangement. Journal of the American Chemical Society, 1985, 107, 6111-6112.	6.6	19
222	Application of a Multiple Time Step Algorithm to Biomolecular Systems. Journal of Physical Chemistry B, 1999, 103, 5396-5405.	1.2	19
223	The Intrinsic Dynamics and Function of Nickel-Binding Regulatory Protein: Insights from Elastic Network Analysis. Biophysical Journal, 2008, 94, 3769-3778.	0.2	19
224	Pairwise additivity of energy components in protein-ligand binding: The HIV II protease-Indinavir case. Journal of Chemical Physics, 2011, 135, 085101.	1.2	19
225	Bringing Clarity to the Prediction of Protein–Ligand Binding Free Energies via "Blurring― Journal of Chemical Theory and Computation, 2014, 10, 1314-1325.	2.3	19
226	KECSA-Movable Type Implicit Solvation Model (KMTISM). Journal of Chemical Theory and Computation, 2015, 11, 667-682.	2.3	19
227	ReaxFF/AMBER—A Framework for Hybrid Reactive/Nonreactive Force Field Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2020, 16, 7645-7654.	2.3	19
228	Validation of Free Energy Methods in AMBER. Journal of Chemical Information and Modeling, 2020, 60, 5296-5300.	2.5	19
229	Open-Source Multi-GPU-Accelerated QM/MM Simulations with AMBER and QUICK. Journal of Chemical Information and Modeling, 2021, 61, 2109-2115.	2.5	19
230	The Genetic Algorithm and the Conformational Search of Polypeptides and Proteins. Molecular Simulation, 1994, 13, 299-320.	0.9	18
231	Application of the Free Energy Perturbation Method to Human Carbonic Anhydrase II Inhibitors. Journal of Medicinal Chemistry, 1995, 38, 2061-2069.	2.9	18
232	The Hydrolysis of Amides and the Proficiency of Amidohydrolases. The Burden Borne by kw. Journal of Physical Chemistry B, 2007, 111, 6507-6519.	1.2	18
233	Accurate Benchmark Calculations on the Gas-Phase Basicities of Small Molecules. Journal of Physical Chemistry A, 2009, 113, 10096-10103.	1.1	18
234	Computational Study of the Resistance Shown by the Subtype B/HIV-1 Protease to Currently Known Inhibitors. Biochemistry, 2010, 49, 4283-4295.	1.2	18

#	Article	IF	CITATIONS
235	Conformational Analysis of Free and Bound Retinoic Acid. Journal of Chemical Theory and Computation, 2012, 8, 1436-1448.	2.3	18
236	Adenine Formation without HCN. Journal of Physical Chemistry A, 2014, 118, 3637-3644.	1.1	18
237	Trapping intermediates in metal transfer reactions of the CusCBAF export pump of Escherichia coli. Communications Biology, 2018, 1, 192.	2.0	18
238	Metabolite Structure Assignment Using In Silico NMR Techniques. Analytical Chemistry, 2020, 92, 10412-10419.	3.2	18
239	Performance of Density Functionals with Small Split Valence Basis Setsâ€. Journal of Physical Chemistry A, 2004, 108, 2904-2911.	1.1	17
240	Accurate Atomic and Molecular Calculations without Gradient Corrections:  Scaled SVWNV Density Functional. Journal of Chemical Theory and Computation, 2005, 1, 546-553.	2.3	17
241	Computer-Aided Drug Design: Using Numbers to Your Advantage. ACS Medicinal Chemistry Letters, 2013, 4, 812-814.	1.3	17
242	An ab initio investigation of the double proton shift in azophenine. Journal of the American Chemical Society, 1989, 111, 3466-3468.	6.6	16
243	Binding of cyanide, cyanate, and thiocyanate to human carbonic anhydrase II. Proteins: Structure, Function and Bioinformatics, 1993, 17, 203-216.	1.5	16
244	Quantum Chemical Study of Ester Aminolysis Catalyzed by a Single Adenine:Â A Reference Reaction for the Ribosomal Peptide Synthesis. Journal of the American Chemical Society, 2001, 123, 7687-7690.	6.6	16
245	Apo and Nickel-Bound Forms of the <i>Pyrococcus horikoshii</i> Species of the Metalloregulatory Protein: NikR Characterized by Molecular Dynamics Simulations. Biochemistry, 2009, 48, 12024-12033.	1.2	16
246	The Role of the Active Site Flap in Streptavidin/Biotin Complex Formation. Journal of the American Chemical Society, 2018, 140, 5434-5446.	6.6	16
247	Development and use of quantum molecular models. Part 77. MNDO calculations for the dehydrocyclooctatetraenes. Journal of the American Chemical Society, 1985, 107, 6175-6179.	6.6	15
248	Structural Analysis of Carbyne Network Polymers. Journal of the American Chemical Society, 1995, 117, 9251-9258.	6.6	15
249	Quantum Mechanical-Molecular Mechanical Coupled Potentials. ACS Symposium Series, 1998, , 2-15.	0.5	15
250	Evaluation of the Catalytic Mechanism of AICAR Transformylase by pH-Dependent Kinetics, Mutagenesis, and Quantum Chemical Calculations. Journal of the American Chemical Society, 2001, 123, 4687-4696.	6.6	15
251	An ab Initio Investigation of the Interactions Involving the Aromatic Group of the Set of FluorinatedN-(4-Sulfamylbenzoyl)benzylamine Inhibitors and Human Carbonic Anhydrase II. Journal of Physical Chemistry B, 2007, 111, 5700-5707.	1.2	15
252	A Combined QM/MM Poissonâ^'Boltzmann Approach. Journal of Chemical Theory and Computation, 2008, 4, 1200-1207.	2.3	15

#	Article	IF	CITATIONS
253	Insights into the Mechanistic Dichotomy of the Protein Farnesyltransferase Peptide Substrates CVIM and CVLS. Journal of the American Chemical Society, 2012, 134, 820-823.	6.6	15
254	QM/MM refinement and analysis of protein bound retinoic acid. Journal of Computational Chemistry, 2012, 33, 301-310.	1.5	15
255	Free Energy-Based Conformational Search Algorithm Using the Movable Type Sampling Method. Journal of Chemical Theory and Computation, 2015, 11, 5853-5864.	2.3	15
256	Detailed potential of mean force studies on host–guest systems from the SAMPL6 challenge. Journal of Computer-Aided Molecular Design, 2018, 32, 1013-1026.	1.3	15
257	Harnessing the Power of Multi-GPU Acceleration into the Quantum Interaction Computational Kernel Program. Journal of Chemical Theory and Computation, 2021, 17, 3955-3966.	2.3	15
258	Computer Simulation of Lipid Systems. Reviews in Computational Chemistry, 0, , 269-298.	1.5	15
259	On the double proton shift in azophenine. Computational and Theoretical Chemistry, 1985, 124, 183-185.	1.5	14
260	Aspects of organomercury chemistry. Organometallics, 1985, 4, 1967-1972.	1.1	14
261	Parallel implementation of a divide and conquer semiempirical algorithm. Theoretical Chemistry Accounts, 1998, 99, 220-223.	0.5	14
262	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Biology, 2017, 12, 575-578.	1.6	14
263	Random Forest Refinement of Pairwise Potentials for Protein–Ligand Decoy Detection. Journal of Chemical Information and Modeling, 2019, 59, 3305-3315.	2.5	14
264	Validation of the Binding Site Structure of the Cellular Retinol-Binding Protein (CRBP) by Ligand NMR Chemical Shift Perturbations. Journal of the American Chemical Society, 2005, 127, 5310-5311.	6.6	13
265	MNDO Parameters for the Prediction of ¹⁹ F NMR Chemical Shifts in Biologically Relevant Compounds. Journal of Physical Chemistry A, 2008, 112, 8829-8838.	1.1	13
266	A Hylleraas functional based perturbative technique to relax the extremely localized molecular orbital wavefunction. Journal of Chemical Physics, 2008, 129, 054101.	1.2	13
267	Assessment of the CCSD and CCSD(T) Coupled-Cluster Methods in Calculating Heats of Formation for Zn Complexes. Journal of Physical Chemistry A, 2009, 113, 10081-10088.	1.1	13
268	Implementation of Protocols To Enable Doctoral Training in Physical and Computational Chemistry of a Blind Graduate Student. Journal of Chemical Education, 2015, 92, 1280-1283.	1.1	13
269	On the fly estimation of host–guest binding free energies using the movable type method: participation in the SAMPL5 blind challenge. Journal of Computer-Aided Molecular Design, 2017, 31, 47-60.	1.3	13
270	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13

#	Article	IF	CITATIONS
271	Statistics-based model for basis set superposition error correction in large biomolecules. Physical Chemistry Chemical Physics, 2012, 14, 7795.	1.3	12
272	Quantum Mechanical Study of Vicinal J Spin–Spin Coupling Constants for the Protein Backbone. Journal of Chemical Theory and Computation, 2013, 9, 4653-4659.	2.3	12
273	Generation of Pairwise Potentials Using Multidimensional Data Mining. Journal of Chemical Theory and Computation, 2018, 14, 5045-5067.	2.3	12
274	Charge Flow between lons and a Dielectric Continuum. 2. Variational Method for Distributing Charge into the Dielectric. Journal of Physical Chemistry B, 2000, 104, 2117-2122.	1.2	11
275	Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores. Journal of Computer-Aided Molecular Design, 2012, 26, 647-659.	1.3	11
276	Role of Substrate Dynamics in Protein Prenylation Reactions. Accounts of Chemical Research, 2015, 48, 439-448.	7.6	11
277	<i>In Silico</i> Collision Cross Section Calculations to Aid Metabolite Annotation. Journal of the American Society for Mass Spectrometry, 2022, 33, 750-759.	1.2	11
278	Computer simulation of enzymatic reactions. Current Opinion in Structural Biology, 1993, 3, 234-240.	2.6	10
279	A quantum mechanical-Poisson–Boltzmann equation approach for studying charge flow between ions and a dielectric continuum. Journal of Chemical Physics, 2000, 112, 3227-3235.	1.2	10
280	Development of a Parametrized Force Field To Reproduce Semiempirical Geometries. Journal of Chemical Theory and Computation, 2006, 2, 1070-1077.	2.3	10
281	Quantum mechanical description of the interactions between DNA and water. Journal of Molecular Graphics and Modelling, 2006, 24, 440-455.	1.3	10
282	Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF. Biochemistry, 2015, 54, 4226-4235.	1.2	10
283	Effect of 10.5 M Aqueous Urea on <i>Helicobacter pylori</i> Urease: A Molecular Dynamics Study. Biochemistry, 2015, 54, 4121-4130.	1.2	10
284	The Role of Molecular Dynamics Potential of Mean Force Calculations in the Investigation of Enzyme Catalysis. Methods in Enzymology, 2016, 577, 1-29.	0.4	10
285	Random Forest Refinement of the KECSA2 Knowledge-Based Scoring Function for Protein Decoy Detection. Journal of Chemical Information and Modeling, 2019, 59, 1919-1929.	2.5	10
286	Mechanism of Zinc Transport through the Zinc Transporter YiiP. Journal of Chemical Theory and Computation, 2022, 18, 2556-2568.	2.3	10
287	Computer-aided drug design, quantum-mechanical methods for biological problems. Current Opinion in Structural Biology, 2022, 75, 102417.	2.6	10
288	General Formulation for a Quantum Free Energy Perturbation Study. The Journal of Physical Chemistry, 1995, 99, 10701-10704.	2.9	9

#	Article	IF	CITATIONS
289	Studying Allosteric Regulation in Metal Sensor Proteins Using Computational Methods. Advances in Protein Chemistry and Structural Biology, 2014, 96, 181-218.	1.0	9
290	Mechanistic Insights into Mg2+-Independent Prenylation by CloQ from Classical Molecular Mechanics and Hybrid Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations. Biochemistry, 2014, 53, 5034-5041.	1.2	9
291	Metal Ion Capture Mechanism of a Copper Metallochaperone. Biochemistry, 2016, 55, 501-509.	1.2	9
292	AutoGraph: Autonomous Graph-Based Clustering of Small-Molecule Conformations. Journal of Chemical Information and Modeling, 2021, 61, 1647-1656.	2.5	9
293	The Genetic Algorithm and Protein Tertiary Structure Prediction. , 1994, , 109-124.		9
294	Generative Models for Molecular Design. Journal of Chemical Information and Modeling, 2020, 60, 5635-5636.	2.5	9
295	Effect of an Inhibitor on the ACE2-Receptor-Binding Domain of SARS-CoV-2. Journal of Chemical Information and Modeling, 2022, 62, 6574-6585.	2.5	9
296	Reply to Comment on "Transferability of Ion Models". The Journal of Physical Chemistry, 1994, 98, 8256-8257.	2.9	8
297	AM1 Parameters for the Prediction of ¹ H and ¹³ C NMR Chemical Shifts in Proteins. Journal of Physical Chemistry A, 2009, 113, 11550-11559.	1.1	8
298	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	1.7	8
299	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	1.2	8
300	Formation of the Metal-Binding Core of the ZRT/IRT-like Protein (ZIP) Family Zinc Transporter. Biochemistry, 2021, 60, 2727-2738.	1.2	8
301	Primer for Designing Main Protease (M ^{pro}) Inhibitors of SARS-CoV-2. Journal of Physical Chemistry Letters, 2022, 13, 5776-5786.	2.1	8
302	The MNDO potential energy surface and tunnelling dynamics of the cyclobutane radical cation. Computational and Theoretical Chemistry, 1985, 122, 59-65.	1.5	7
303	Origin of Product Selectivity in a Prenyl Transfer Reaction from the Same Intermediate: Exploration of Multiple FtmPT1-Catalyzed Prenyl Transfer Pathways. Biochemistry, 2014, 53, 6126-6138.	1.2	7
304	Fragment-based error estimation in biomolecular modeling. Drug Discovery Today, 2014, 19, 45-50.	3.2	7
305	Incorporation of side chain flexibility into protein binding pockets using MTflex. Bioorganic and Medicinal Chemistry, 2016, 24, 4978-4987.	1.4	7
306	Modelling the enantioselectivity of subtilisin in water and organic solvents: insights from molecular dynamics and quantum mechanical/molecular mechanical studies. Chemical Communications, 2000, , 559-560.	2.2	6

#	Article	IF	CITATIONS
307	Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target. Journal of Molecular Structure, 2015, 1093, 219-227.	1.8	6
308	An efficient and accurate molecular alignment and docking technique using ab initio quality scoring. Journal of Chemical Physics, 2008, 129, 025102.	1.2	5
309	Importance of loop dynamics in the neocarzinostatin chromophore binding and release mechanisms. Physical Chemistry Chemical Physics, 2010, 12, 3443.	1.3	5
310	Free-Energy-Based Protein Design: Re-Engineering Cellular Retinoic Acid Binding Protein II Assisted by the Moveable-Type Approach. Journal of the American Chemical Society, 2018, 140, 3483-3486.	6.6	5
311	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
312	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
313	Impact of the <i>Journal of Chemical Information and Modeling</i> Special Issue on Women in Computational Chemistry. Journal of Chemical Information and Modeling, 2020, 60, 3328-3330.	2.5	5
314	The Pressure and Pressure Tensor for Macromolecular Systems. The Journal of Physical Chemistry, 1996, 100, 905-908.	2.9	4
315	An improved 6â€31G basis set for atoms Ga through Kr. International Journal of Quantum Chemistry, 2007, 107, 3028-3038.	1.0	4
316	Assessment of the CCSD and CCSD(T) coupled-cluster methods in calculating heats of formation for Cu complexes. Molecular Physics, 2009, 107, 1251-1259.	0.8	4
317	Mechanism of Formation of the Nonstandard Product in the Prenyltransferase Reaction of the G115T Mutant of FtmPT1: A Case of Reaction Dynamics Calling the Shots?. Biochemistry, 2017, 56, 2995-3007.	1.2	4
318	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	1.8	4
319	Receptor–Ligand Binding Free Energies from a Consecutive Histograms Monte Carlo Sampling Method. Journal of Chemical Theory and Computation, 2020, 16, 6645-6655.	2.3	4
320	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
321	Pair Potentials as Machine Learning Features. Journal of Chemical Theory and Computation, 2020, 16, 5385-5400.	2.3	4
322	Systematic Evaluation of Ion Diffusion and Water Exchange. Journal of Chemical Theory and Computation, 2022, 18, 3017-3026.	2.3	4
323	Correction. Mechanism of the Azulene to Napthalene Rearrangement. Journal of the American Chemical Society, 1986, 108, 557-557.	6.6	3
324	Charge Transfer Interactions in Biology: A New View of the Protein-Water Interface. ACS Symposium Series, 1999, , 439-447.	0.5	3

#	Article	IF	CITATIONS
325	Theoretical study of the electron density distributions of glycyl-L-threonine dihydrate. Molecular Physics, 2004, 102, 2545-2557.	0.8	3
326	MRP.py: A Parametrizer of Post-Translationally Modified Residues. Journal of Chemical Information and Modeling, 2020, 60, 4424-4428.	2.5	3
327	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
328	Parameterization of a Dioxygen Binding Metal Site Using the MCPB.py Program. Methods in Molecular Biology, 2021, 2199, 257-275.	0.4	3
329	Inhibition of carbonic anhydrase. [Erratum to document cited in CA115(3):24912t]. Journal of the American Chemical Society, 1992, 114, 1128-1128.	6.6	2
330	Progress and issues for computationally guided lead discovery and optimization. , 2010, , 1-14.		2
331	Computer-aided drug design: a practical guide to protein-structure-based modeling. , 2010, , 181-196.		2
332	Comment on "a minimal implementation of the AMBER-GAUSSIAN interface for Ab Initio QM/MM-MD simulation― Journal of Computational Chemistry, 2012, 33, 1643-1644.	1.5	2
333	Letter from the Editors. Journal of Chemical Information and Modeling, 2015, 55, 719-720.	2.5	2
334	Converging Interests: Chemoinformatics, History, and Bibliometrics. Journal of Chemical Information and Modeling, 2020, 60, 5870-5872.	2.5	2
335	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
336	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
337	Refinement of pairwise potentials via logistic regression to score <scp>proteinâ€protein</scp> interactions. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1559-1568.	1.5	2
338	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
339	Does chair cyclo-octatetraene exist?. Journal of the Chemical Society Chemical Communications, 1985, , 343.	2.0	1
340	Structural Analysis of Carbyne Network Polymers. ACS Symposium Series, 1995, , 304-315.	0.5	1
341	Free Energy Perturbation Calculations Within Quantum Mechanical Methodologies. ACS Symposium Series, 1996, , 142-153.	0.5	1
342	Electronic structure, chemical bonding, and oxidation numbers of firstâ€row transition metals in [MePIm ₂] complexes and their cations. International Journal of Quantum Chemistry, 2011, 111, 3630-3642.	1.0	1

#	Article	IF	CITATIONS
343	Frontispiece: Quantum Crystallography: Current Developments and Future Perspectives. Chemistry - A European Journal, 2018, 24, .	1.7	1
344	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
345	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
346	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
347	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
348	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
349	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
350	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
351	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
352	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
353	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
354	JCIM Special Issue on Generative Models for Molecular Design. Journal of Chemical Information and Modeling, 2020, 60, 1072-1072.	2.5	1
355	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
356	FFENCODER-PL: Pair Wise Energy Descriptors for Protein-Ligand Pose Selection. Journal of Chemical Theory and Computation, 2021, 17, 6647-6657.	2.3	1
357	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
358	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
359	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
360	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1

#	Article	IF	CITATIONS
361	What Makes a Paper Be Highly Cited? 60 Years of the <i>Journal of Chemical Information and Modeling</i> . Journal of Chemical Information and Modeling, 2020, 60, 5866-5867.	2.5	1
362	A Polarizable Cationic Dummy Metal Ion Model. Journal of Physical Chemistry Letters, 0, , 5334-5340.	2.1	1
363	Flexibility of serine protease in nonaqueous solvent. Techniques in Protein Chemistry, 1997, 8, 693-702.	0.3	0
364	New Manuscript Type: Application Note. Journal of Chemical Information and Modeling, 2014, 54, 3045-3045.	2.5	0
365	Using Quantum Mechanics in Biological Structure Refinement. Biophysical Journal, 2014, 106, 446a.	0.2	Ο
366	Introducing the Review Manuscript Type. Journal of Chemical Information and Modeling, 2015, 55, 1291-1291.	2.5	0
367	Investing in the Future. Journal of Chemical Information and Modeling, 2018, 58, 1153-1153.	2.5	Ο
368	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
369	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
370	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
371	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
372	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
373	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
374	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
375	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
376	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
377	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
378	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0

#	Article	IF	CITATIONS
379	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
380	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
381	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
382	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
383	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	Ο
384	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
385	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
386	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
387	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
388	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
389	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
390	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
391	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
392	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
393	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
394	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
395	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
396	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0

#	Article	IF	CITATIONS
397	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	Ο
398	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
399	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
400	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
401	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
402	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
403	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
404	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
405	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
406	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
407	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
408	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
409	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
410	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
411	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
412	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
413	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
414	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0

#	Article	IF	CITATIONS
415	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
416	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
417	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	Ο
418	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
419	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	Ο
420	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
421	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
422	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
423	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
424	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
425	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
426	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
427	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	Ο
428	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
429	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	Ο
430	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
431	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
432	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0

#	Article	IF	CITATIONS
433	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	Ο
434	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
435	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
436	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
437	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
438	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
439	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
440	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
441	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
442	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
443	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
444	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
445	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
446	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
447	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
448	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
449	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
450	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0

#	Article	IF	CITATIONS
451	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	Ο
452	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
453	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
454	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
455	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
456	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
457	Free Energy Perturbation Calculations within Quantum Mechanical Methodologies. , 2002, , 103-123.		Ο
458	Interpreting The Observed Substrate Selectivity And The Product Regioselectivity In Orf2-Catalyzed Prenylation From X-Ray Structures. Challenges and Advances in Computational Chemistry and Physics, 2009, , 351-375.	0.6	0
459	Bilayer-Peptide Interactions. , 1996, , 323-352.		Ο
460	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
461	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
462	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
463	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
464	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
465	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	Ο
466	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
467	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
468	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0

27

#	Article	IF	CITATIONS
469	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
470	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
471	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0