
Stephen C Jameson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1982013/publications.pdf Version: 2024-02-01

STERHEN CLAMESON

#	Article	IF	CITATIONS
1	Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. Journal of Experimental Medicine, 2022, 219, .	4.2	56
2	Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+ tissue-resident memory TÂcells. Immunity, 2022, 55, 98-114.e5.	6.6	38
3	The Extracellular ATP Receptor P2RX7 Imprints a Promemory Transcriptional Signature in Effector CD8+ T Cells. Journal of Immunology, 2022, 208, 1686-1699.	0.4	10
4	γδThymocyte Maturation and Emigration in Adult Mice. Journal of Immunology, 2022, 208, 2131-2140.	0.4	3
5	P2RX7 Enhances Tumor Control by CD8+ T Cells in Adoptive Cell Therapy. Cancer Immunology Research, 2022, 10, 871-884.	1.6	12
6	Parabiosis in Mice to Study Tissue Residency of Immune Cells. Current Protocols, 2022, 2, .	1.3	5
7	The Naming of Memory T-Cell Subsets. Cold Spring Harbor Perspectives in Biology, 2021, 13, a037788.	2.3	8
8	T Cell Memory: Understanding COVID-19. Immunity, 2021, 54, 14-18.	6.6	127
9	CD8+ T cell self-tolerance permits responsiveness but limits tissue damage. ELife, 2021, 10, .	2.8	9
10	Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells. Nature Communications, 2021, 12, 2308.	5.8	11
11	Senolytics reduce coronavirus-related mortality in old mice. Science, 2021, 373, .	6.0	184
12	Inflating the role of stromal cells in CD8+ T cell memory. Nature Immunology, 2021, 22, 942-944.	7.0	1
13	CoAching CD8+ TÂcells for tumor immunotherapy—the pantothenate way. Cell Metabolism, 2021, 33, 2305-2306.	7.2	1
14	New Insights into the Immune System Using Dirty Mice. Journal of Immunology, 2020, 205, 3-11.	0.4	59
15	Sensing of ATP via the Purinergic Receptor P2RX7 Promotes CD8+ Trm Cell Generation by Enhancing Their Sensitivity to the Cytokine TGF-1². Immunity, 2020, 53, 158-171.e6.	6.6	66
16	The relationship between CD4+ follicular helper T cells and CD8+ resident memory T cells: sisters or distant cousins?. International Immunology, 2020, 32, 583-587.	1.8	7
17	ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nature Methods, 2020, 17, 833-843.	9.0	91
18	VISTA is a checkpoint regulator for naÃ⁻ve T cell quiescence and peripheral tolerance. Science, 2020, 367, .	6.0	156

#	Article	IF	CITATIONS
19	500â€P2RX7 agonist treatment boosts the ability of IL-12-activated CD8+ T cells to infiltrate and control murine melanoma. , 2020, , .		0
20	Microbial Exposure Enhances Immunity to Pathogens Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. Cell Reports, 2019, 28, 1729-1743.e5.	2.9	74
21	The Functional Requirement for CD69 in Establishment of Resident Memory CD8+ T Cells Varies with Tissue Location. Journal of Immunology, 2019, 203, 946-955.	0.4	118
22	Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD. Blood, 2019, 134, 1670-1682.	0.6	49
23	NK Cell IL-10 Production Requires IL-15 and IL-10 Driven STAT3 Activation. Frontiers in Immunology, 2019, 10, 2087.	2.2	28
24	ARTC2.2/P2RX7 Signaling during Cell Isolation Distorts Function and Quantification of Tissue-Resident CD8+ T Cell and Invariant NKT Subsets. Journal of Immunology, 2019, 202, 2153-2163.	0.4	47
25	Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22262-22268.	3.3	27
26	Self-Regulation of Memory CD8 T Cell Metabolism through Extracellular ATP Signaling. Immunometabolism, 2019, 1, .	0.7	18
27	Abstract A173: The extracellular ATP receptor P2RX7 is required for CD8+ T-cells to maintain and respond to chronic virus and melanoma tumors. , 2019, , .		0
28	Understanding Subset Diversity in T Cell Memory. Immunity, 2018, 48, 214-226.	6.6	389
29	Interleukin-15 Complex Treatment Protects Mice from Cerebral Malaria by Inducing Interleukin-10-Producing Natural Killer Cells. Immunity, 2018, 48, 760-772.e4.	6.6	62
30	ls a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028910.	2.3	13
31	What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029132.	2.3	15
32	The virtuous selfâ€ŧolerance of virtual memory T cells. EMBO Journal, 2018, 37, .	3.5	8
33	The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature, 2018, 559, 264-268.	13.7	209
34	Embracing microbial exposure in mouse research. Journal of Leukocyte Biology, 2018, 105, 73-79.	1.5	27
35	Retrieving short-term memories of flu. Science Immunology, 2017, 2, .	5.6	1
36	CD8αα intraepithelial lymphocytes arise from two main thymic precursors. Nature Immunology, 2017, 18, 771-779.	7.0	93

#	Article	IF	CITATIONS
37	Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis. Developmental Cell, 2017, 43, 274-289.e5.	3.1	114
38	Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. Journal of Immunology, 2017, 199, 383-388.	0.4	197
39	Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst γδT, Innate Lymphoid, and Th Cells. Journal of Immunology, 2016, 197, 1460-1470.	0.4	114
40	Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nature Immunology, 2016, 17, 565-573.	7.0	150
41	Spontaneous partial loss of the OT-I transgene. Nature Immunology, 2016, 17, 471-471.	7.0	7
42	Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 2016, 532, 512-516.	13.7	848
43	Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response. Cell Host and Microbe, 2016, 19, 713-719.	5.1	189
44	IL-4 sensitivity shapes the peripheral CD8+ T cell pool and response to infection. Journal of Experimental Medicine, 2016, 213, 1319-1329.	4.2	51
45	The Transcription Factor KLF2 Restrains CD4 + T Follicular Helper Cell Differentiation. Immunity, 2015, 42, 252-264.	6.6	149
46	Innate Memory T cells. Advances in Immunology, 2015, 126, 173-213.	1.1	99
47	TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8+ T cells. Nature Immunology, 2015, 16, 1069-1076.	7.0	57
48	Tissue-Specific Distribution of iNKT Cells Impacts Their Cytokine Response. Immunity, 2015, 43, 566-578.	6.6	244
49	Effective effector generation of CD8+ T cells and NK cells: A need for T-bet and ZEB-too. Journal of Experimental Medicine, 2015, 212, 1990-1990.	4.2	6
50	The TCR's sensitivity to self peptide–MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nature Immunology, 2015, 16, 107-117.	7.0	168
51	Correction: Derivation and Maintenance of Virtual Memory CD8 T Cells. Journal of Immunology, 2014, 193, 2609-2609.	0.4	0
52	Antigen-Specific Culture of Memory-like CD8 T Cells for Adoptive Immunotherapy. Cancer Immunology Research, 2014, 2, 839-845.	1.6	6
53	The self-obsession of T cells: how TCR signaling thresholds affect fate 'decisions' and effector function. Nature Immunology, 2014, 15, 815-823.	7.0	230
54	An Uncommon Tail about the Common Î ³ -Chain. Immunity, 2014, 40, 859-860.	6.6	3

#	Article	IF	CITATIONS
55	Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nature Immunology, 2013, 14, 1285-1293.	7.0	621
56	T Cell Memory: without Prompting. Journal of Immunology, 2013, 190, 4443-4444.	0.4	0
57	Effector-like CD8+ T Cells in the Memory Population Mediate Potent Protective Immunity. Immunity, 2013, 38, 1250-1260.	6.6	220
58	Preexisting High Frequencies of Memory CD8+ T Cells Favor Rapid Memory Differentiation and Preservation of Proliferative Potential upon Boosting. Immunity, 2013, 39, 171-183.	6.6	81
59	Murine thymic selection quantified using a unique method to capture deleted T cells. Proceedings of the United States of America, 2013, 110, 4679-4684.	3.3	148
60	Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nature Immunology, 2013, 14, 1146-1154.	7.0	510
61	Cutting Edge: The Signals for the Generation of T Cell Memory Are Qualitatively Different Depending on TCR Ligand Strength. Journal of Immunology, 2013, 191, 5797-5801.	0.4	21
62	Thymoproteasome subunit-β5T generates peptide-MHC complexes specialized for positive selection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6979-6984.	3.3	80
63	Virtual memory CD8 T cells display unique functional properties. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13498-13503.	3.3	137
64	Kruppel-like factor 2 protects against ischemic stroke by regulating endothelial blood brain barrier function. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H796-H805.	1.5	65
65	Cutting Edge: Krüppel-like Factor 2 Is Required for Phenotypic Maintenance but Not Development of B1 B Cells. Journal of Immunology, 2012, 189, 3293-3297.	0.4	12
66	Remembering to Be Tolerant. Science, 2012, 335, 667-668.	6.0	0
67	Derivation and Maintenance of Virtual Memory CD8 T Cells. Journal of Immunology, 2012, 188, 2516-2523.	0.4	128
68	Krüppel-like Factors in Lymphocyte Biology. Journal of Immunology, 2012, 188, 521-526.	0.4	54
69	Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2072-2077.	3.3	31
70	CD8 T cell memory: it takes all kinds. Frontiers in Immunology, 2012, 3, 353.	2.2	13
71	CD8 T cell quiescence revisited. Trends in Immunology, 2012, 33, 224-230.	2.9	61
72	TGF-β Sensitivity Restrains CD8+ T Cell Homeostatic Proliferation by Enforcing Sensitivity to IL-7 and IL-15. PLoS ONE, 2012, 7, e42268.	1.1	24

#	Article	IF	CITATIONS
73	Selection of Self-Reactive T Cells in the Thymus. Annual Review of Immunology, 2012, 30, 95-114.	9.5	290
74	Keeping STATs on Memory CD8+ T Cells. Immunity, 2011, 35, 663-665.	6.6	10
75	Alternative memory in the CD8 T cell lineage. Trends in Immunology, 2011, 32, 50-56.	2.9	122
76	Fox factors fight over T cell quiescence. Nature Immunology, 2011, 12, 522-524.	7.0	8
77	Kruppel-Like Factor 2 Is Required for Trafficking but Not Quiescence in Postactivated T Cells. Journal of Immunology, 2011, 186, 775-783.	0.4	47
78	Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 716-721.	3.3	94
79	Postselection Thymocyte Maturation and Emigration Are Independent of IL-7 and ERK5. Journal of Immunology, 2011, 186, 1343-1347.	0.4	19
80	Not all naÃ ⁻ ve CD8 T cells are created equal. Immunology and Cell Biology, 2011, 89, 576-577.	1.0	3
81	T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nature Immunology, 2010, 11, 709-716.	7.0	225
82	IL-15 Regulates Both Quantitative and Qualitative Features of the Memory CD8 T Cell Pool. Journal of Immunology, 2010, 184, 35-44.	0.4	76
83	Self-Specific CD8+ T Cells Maintain a Semi-Naive State Following Lymphopenia-Induced Proliferation. Journal of Immunology, 2010, 184, 5604-5611.	0.4	18
84	Krüppel-Like Factor 2 Regulates Trafficking and Homeostasis of γδT Cells. Journal of Immunology, 2010, 184, 6060-6066.	0.4	50
85	CD4+CD25+Foxp3+ Regulatory T Cells Optimize Diversity of the Conventional T Cell Repertoire during Reconstitution from Lymphopenia. Journal of Immunology, 2010, 184, 4749-4760.	0.4	34
86	IL-2 Complex Treatment Can Protect Naive Mice from Bacterial and Viral Infection. Journal of Immunology, 2010, 185, 6584-6590.	0.4	31
87	Positive selection optimizes the number and function of MHCII-restricted CD4 ⁺ T cell clones in the naive polyclonal repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11241-11245.	3.3	39
88	The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. Journal of Experimental Medicine, 2009, 206, 435-448.	4.2	312
89	Epidermal Langerhans Cells Are Not Required for UV-Induced Immunosuppression. Journal of Immunology, 2009, 183, 5548-5553.	0.4	40
90	Programming for CD8 T Cell Memory Development Requires IL-12 or Type I IFN. Journal of Immunology, 2009, 182, 2786-2794.	0.4	185

#	Article	IF	CITATIONS
91	Self–class I MHC molecules support survival of naive CD8 T cells, but depress their functional sensitivity through regulation of CD8 expression levels. Journal of Experimental Medicine, 2009, 206, 2253-2269.	4.2	72
92	Naive T cell homeostasis: from awareness of space to a sense of place. Nature Reviews Immunology, 2009, 9, 823-832.	10.6	332
93	KLF2 Transcription-Factor Deficiency in T Cells Results in Unrestrained Cytokine Production and Upregulation of Bystander Chemokine Receptors. Immunity, 2009, 31, 122-130.	6.6	183
94	Diversity in T Cell Memory: An Embarrassment of Riches. Immunity, 2009, 31, 859-871.	6.6	344
95	A Chronic Need for IL-21. Science, 2009, 324, 1525-1526.	6.0	41
96	Different T Cell Receptor Signals Determine CD8 ⁺ Memory Versus Effector Development. Science, 2009, 323, 502-505.	6.0	174
97	Roles of Krüppel-like Factors in Lymphocytes. , 2009, , 95-106.		0
98	T ell migration: Kruppeled T cells move again. Immunology and Cell Biology, 2008, 86, 297-298.	1.0	6
99	The nature of the lymphopenic environment dictates protective function of homeostatic-memory CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18484-18489.	3.3	34
100	Langerin Expressing Cells Promote Skin Immune Responses under Defined Conditions. Journal of Immunology, 2008, 180, 4722-4727.	0.4	106
101	Selective Regulation of CD8 Effector T Cell Migration by the p110Î ³ Isoform of Phosphatidylinositol 3-Kinase. Journal of Immunology, 2008, 180, 2081-2088.	0.4	64
102	Regulation of KLF2 in the Thymus. FASEB Journal, 2008, 22, 346-346.	0.2	0
103	IL-15 Is Required for Sustained Lymphopenia-Driven Proliferation and Accumulation of CD8 T Cells. Journal of Immunology, 2007, 179, 120-125.	0.4	58
104	The CD8 T cell response to vaccinia virus exhibits site-dependent heterogeneity of functional responses. International Immunology, 2007, 19, 733-743.	1.8	20
105	Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. Journal of Experimental Medicine, 2007, 204, 2667-2677.	4.2	119
106	Naive CD4+ T Cell Frequency Varies for Different Epitopes and Predicts Repertoire Diversity and Response Magnitude. Immunity, 2007, 27, 203-213.	6.6	857
107	CD8+ T Cell Differentiation: Choosing a Path through T-bet. Immunity, 2007, 27, 180-182.	6.6	24
108	T cells climb on board Blimp-1. Trends in Immunology, 2006, 27, 349-351.	2.9	2

#	Article	IF	CITATIONS
109	The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nature Immunology, 2006, 7, 475-481.	7.0	193
110	Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature, 2006, 442, 299-302.	13.7	489
111	The Sialyltransferase ST3Gal-I Is Not Required for Regulation of CD8-Class I MHC Binding during T Cell Development. Journal of Immunology, 2006, 176, 7421-7430.	0.4	17
112	Central tolerance: learning self-control in the thymus. Nature Reviews Immunology, 2005, 5, 772-782.	10.6	549
113	Loss of CD8 and TCR binding to Class I MHC ligands following T cell activation. International Immunology, 2005, 17, 1607-1617.	1.8	41
114	Characterizing the Impact of CD8 Antibodies on Class I MHC Multimer Binding. Journal of Immunology, 2005, 174, 3986-3991.	0.4	15
115	Characteristics of NK Cell Migration Early after Vaccinia Infection. Journal of Immunology, 2005, 175, 2152-2157.	0.4	32
116	The timing of TCRα expression critically influences T cell development and selection. Journal of Experimental Medicine, 2005, 202, 111-121.	4.2	155
117	T cell homeostasis: Keeping useful T cells alive and live T cells useful. Seminars in Immunology, 2005, 17, 231-237.	2.7	111
118	Cutting Edge: Transpresentation of IL-15 by Bone Marrow-Derived Cells Necessitates Expression of IL-15 and IL-15R1± by the Same Cells. Journal of Immunology, 2004, 173, 6537-6541.	0.4	178
119	A Role for CD28 in Lymphopenia-Induced Proliferation of CD4 T Cells. Journal of Immunology, 2004, 173, 3909-3915.	0.4	55
120	Cutting Edge: LFA-1 Integrin-Dependent T Cell Adhesion Is Regulated by Both Ag Specificity and Sensitivity. Journal of Immunology, 2004, 173, 2222-2226.	0.4	35
121	The Fourth Way? Harnessing Aggressive Tendencies in the Thymus. Journal of Immunology, 2004, 173, 6515-6520.	0.4	83
122	Environmental conservation: bystander CD4 T cells keep CD8 memories fresh. Nature Immunology, 2004, 5, 873-874.	7.0	10
123	Location of the epitope for an anti-CD8α antibody 53.6.7 which enhances CD8α-MHC class I interaction indicates antibody stabilization of a higher affinity CD8 conformation. Immunology Letters, 2004, 93, 123-130.	1.1	15
124	Receptor Sensitivity: When T cells Lose Their Sense of Self. Current Biology, 2003, 13, R239-R241.	1.8	21
125	POSITIVE ANDNEGATIVESELECTION OFT CELLS. Annual Review of Immunology, 2003, 21, 139-176.	9.5	1,321
126	In Vivo Survival and Homeostatic Proliferation of Natural Killer Cells. Journal of Experimental Medicine, 2003, 197, 967-976.	4.2	212

#	Article	IF	CITATIONS
127	Thymocyte Sensitivity and Supramolecular Activation Cluster Formation Are Developmentally Regulated: A Partial Role for Sialylation. Journal of Immunology, 2003, 171, 4512-4520.	0.4	52
128	Distinct Effects of STAT5 Activation on CD4+ and CD8+ T Cell Homeostasis: Development of CD4+CD25+ Regulatory T Cells versus CD8+ Memory T Cells. Journal of Immunology, 2003, 171, 5853-5864.	0.4	186
129	Competition for self ligands restrains homeostatic proliferation of naive CD4 T cells. Proceedings of the United States of America, 2003, 100, 1185-1190.	3.3	109
130	Differential role for IL-7 in inducing lung Kruppel-like factor (Kruppel-like factor 2) expression by naive versus activated T cells. International Immunology, 2003, 15, 1341-1348.	1.8	20
131	A Spontaneous CD8 T Cell-Dependent Autoimmune Disease to an Antigen Expressed Under the Human Keratin 14 Promoter. Journal of Immunology, 2002, 169, 2141-2147.	0.4	52
132	Multiple Choices. Journal of Experimental Medicine, 2002, 195, F49-F52.	4.2	138
133	Rare, Structurally Homologous Self-Peptides Promote Thymocyte Positive Selection. Immunity, 2002, 17, 131-142.	6.6	90
134	Homeostatic expansion versus antigen-driven proliferation: common ends by different means?. Microbes and Infection, 2002, 4, 531-537.	1.0	34
135	Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nature Immunology, 2002, 3, 903-910.	7.0	250
136	Maintaining the norm: T-cell homeostasis. Nature Reviews Immunology, 2002, 2, 547-556.	10.6	546
137	The Impact of Duration versus Extent of TCR Occupancy on T Cell Activation. Immunity, 2001, 15, 59-70.	6.6	218
138	CD8 Binding to MHC Class I Molecules Is Influenced by T Cell Maturation and Glycosylation. Immunity, 2001, 15, 1051-1061.	6.6	166
139	IL-12 Enhances CD8 T Cell Homeostatic Expansion. Journal of Immunology, 2001, 166, 5515-5521.	0.4	104
140	A Low Affinity TCR Ligand Restores Positive Selection of CD8+ T Cells In Vivo. Journal of Immunology, 2001, 166, 6602-6607.	0.4	33
141	Homeostatic Expansion Occurs Independently of Costimulatory Signals. Journal of Immunology, 2001, 167, 5664-5668.	0.4	114
142	Cutting Edge: In Situ Tetramer Staining of Antigen-Specific T Cells in Tissues. Journal of Immunology, 2000, 165, 613-617.	0.4	133
143	Interleukin-7 mediates the homeostasis of naÃ ⁻ ve and memory CD8 T cells in vivo. Nature Immunology, 2000, 1, 426-432.	7.0	1,443
144	Critical Role for Cd8 in T Cell Receptor Binding and Activation by Peptide/Major Histocompatibility Complex Multimers. Journal of Experimental Medicine, 2000, 191, 335-346.	4.2	237

#	Article	IF	CITATIONS
145	Positive Selection Is Limited by Available Peptide-Dependent MHC Conformations. Journal of Immunology, 2000, 164, 3519-3526.	0.4	12
146	Role of 2c T Cell Receptor Residues in the Binding of Self–And Allo–Major Histocompatibility Complexes. Journal of Experimental Medicine, 2000, 191, 1355-1364.	4.2	52
147	Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13306-13311.	3.3	316
148	A Divalent Major Histocompatibility Complex/IgG1 Fusion Protein Induces Antigen-Specific T Cell Activationin Vitroandin Vivo. Cellular Immunology, 1999, 192, 54-62.	1.4	11
149	Qualitative and Quantitative Differences in T Cell Receptor Binding of Agonist and Antagonist Ligands. Immunity, 1999, 10, 227-237.	6.6	216
150	Enhanced sensitivity for sequence determination of major histocompatibility complex class I peptides by membrane preconcentration - capillary electrophoresis -microspray - tandem mass spectrometry. Electrophoresis, 1998, 19, 2207-2212.	1.3	38
151	T-cell selection. Current Opinion in Immunology, 1998, 10, 214-219.	2.4	141
152	Preselection Thymocytes Are More Sensitive to T Cell Receptor Stimulation Than Mature T Cells. Journal of Experimental Medicine, 1998, 188, 1867-1874.	4.2	196
153	T cell receptor antagonism in vivo, at last. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14001-14002.	3.3	8
154	Identification of a Naturally Occurring Ligand for Thymic Positive Selection. Immunity, 1997, 6, 389-399.	6.6	171
155	Utility of membrane preconcentration-capillary electrophoresis-mass spectrometry in overcoming limited sample loading for analysis of biologically derived drug metabolites, peptides, and proteins. Journal of the American Society for Mass Spectrometry, 1997, 8, 15-24.	1.2	78
156	Strategy for isolating and sequencing biologically derived MHC class I peptides. Journal of Chromatography A, 1996, 744, 273-278.	1.8	45
157	Rapid loading of large sample volumes, analyte cleanup, and modified moving boundary transient isotachophoresis conditions for membrane preconcentration-capillary electrophoresis in small diameter capillaries. Electrophoresis, 1996, 17, 1801-1807.	1.3	54
158	T-cell-receptor affinity and thymocyte positive selection. Nature, 1996, 381, 616-620.	13.7	584
159	T cell receptor (TCR) recognition of MHC class I variants: intermolecular second-site reversion provides evidence for peptide/MHC conformational variation Journal of Experimental Medicine, 1996, 184, 253-258.	4.2	27
160	Options for TCR Interactions: TCR Agonists, Antagonists and Partial Agonists. , 1996, , 181-190.		0
161	Positive Selection of Thymocytes. Annual Review of Immunology, 1995, 13, 93-126.	9.5	557
162	T cell receptor antagonists and partial agonists. Immunity, 1995, 2, 1-11.	6.6	289

#	ARTICLE	IF	CITATIONS
163	Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity, 1995, 3, 79-86.	6.6	160
164	Selecting the T cell receptor repertoire. Science, 1994, 264, 796-797.	6.0	72
165	A thymic epithelial cell line induces both positive and negative selection in the thymus. International Immunology, 1994, 6, 239-246.	1.8	28
166	The ligand for positive selection of T lymphocytes in the thymus. Current Opinion in Immunology, 1994, 6, 273-278.	2.4	53
167	Specificity and flexibility in thymic selection. Nature, 1994, 369, 750-752.	13.7	211
168	T cell receptor antagonist peptides induce positive selection. Cell, 1994, 76, 17-27.	13.5	2,538
169	Variable binding affinities of listeriolysin O peptides for the H-2Kd class I molecule. European Journal of Immunology, 1993, 23, 2005-2010.	1.6	36
170	Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells Journal of Experimental Medicine, 1993, 177, 1541-1550.	4.2	276
171	Peptide-induced conformational changes in class I heavy chains alter major histocompatibility complex recognition Journal of Experimental Medicine, 1992, 176, 1757-1761.	4.2	121
172	Cloning and expression of class I major histocompatibility complex genes of the rat Journal of Experimental Medicine, 1992, 175, 1749-1757.	4.2	45
173	Chromosome 14 in B10.A(18R) mice is recombinant and includes Tcra-V a alleles. Immunogenetics, 1992, 35, 190-198.	1.2	4
174	Ham-2 corrects the class I antigen-processing defect in RMA-S cells. Nature, 1992, 355, 647-649.	13.7	297
175	Dissection of major histocompatibility complex (MHC) and T cell receptor contact residues in a Kb-restricted ovalbumin peptide and an assessment of the predictive power of MHC-binding motifs. European Journal of Immunology, 1992, 22, 2663-2667.	1.6	131
176	Profound alteration in an alpha beta T-cell antigen receptor repertoire due to polymorphism in the first complementarity-determining region of the beta chain Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10267-10271.	3.3	29
177	Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature, 1989, 341, 746-749.	13.7	609