Xiangxing Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1981447/publications.pdf Version: 2024-02-01

XIANCYING XII

#	Article	IF	CITATIONS
1	General Preparation and Shaping of Multifunctional Nanowire Aerogels for Pressure/Gas/Photo-Sensing. Advanced Fiber Materials, 2022, 4, 66-75.	16.1	7
2	Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Research, 2022, 15, 1269-1275.	10.4	23
3	Hybrid Graphene-Perovskite Quantum Dot Photodetectors With Solar-Blind UV and Visible Light Response. IEEE Photonics Technology Letters, 2022, 34, 101-104.	2.5	4
4	Ambipolar Photoresponse of CsPbX ₃ -ZnO (X = Cl, Br, and I) Heterojunctions. ACS Applied Electronic Materials, 2022, 4, 1525-1532.	4.3	9
5	Ternary phase diagram of all-inorganic perovskite CsPbClaBrbI3â^'aâ^'b nanocrystals. Nano Research, 2022, 15, 7590-7596.	10.4	7
6	Reversible Transformation between CsPbBr ₃ Perovskite Nanowires and Nanorods with Polarized Optoelectronic Properties. Advanced Functional Materials, 2021, 31, 2011251.	14.9	29
7	CsPbX ₃ â€ITO (X = Cl, Br, I) Nanoâ€Heterojunctions: Voltage Tuned Positive to Negative Photoresponse. Small, 2021, 17, e2101403.	10.0	15
8	Sb@S–N–C nanocomposite as long-cycle stable anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 814, 152161.	5.5	7
9	Perovskite Nanoâ€Heterojunctions: Synthesis, Structures, Properties, Challenges, and Prospects. Small Structures, 2020, 1, 2000009.	12.0	52
10	Continuous preparation of antimony nanocrystals with near infrared photothermal property by pulsed laser ablation in liquids. Scientific Reports, 2020, 10, 15095.	3.3	9
11	Noncontact evaluation of full elastic constants of perovskite MAPbBr3 via Photoacoustic eigen-spectrum analysis in one test. Scientific Reports, 2020, 10, 9994.	3.3	4
12	Heterostructural CsPbX ₃ -PbS (X = Cl, Br, I) Quantum Dots with Tunable Vis–NIR Dual Emission. Journal of the American Chemical Society, 2020, 142, 4464-4471.	13.7	107
13	Perovskite Quantum Dot Photodetectors. Springer Series in Materials Science, 2020, , 181-218.	0.6	1
14	Shape-control of CeF ₃ nanocrystals by doping polyoxometalates: syntheses, characterization and tunable photoluminescence. Chemical Communications, 2019, 55, 1619-1622.	4.1	9
15	Polyoxometalate precursors for precisely controlled synthesis of bimetallic sulfide heterostructure through nucleation-doping competition. Nanoscale, 2018, 10, 8404-8412.	5.6	65
16	Polarized Optoelectronics of CsPbX ₃ (X = Cl, Br, I) Perovskite Nanoplates with Tunable Size and Thickness. Advanced Functional Materials, 2018, 28, 1800283.	14.9	63
17	Allâ€Inorganic Perovskite Quantum Dots/pâ€5i Heterojunction Lightâ€Emitting Diodes under DC and AC Driving Modes. Advanced Optical Materials, 2018, 6, 1700897.	7.3	39
18	Low Power Consumption Red Light-Emitting Diodes Based on Inorganic Perovskite Quantum Dots under an Alternating Current Driving Mode. Nanomaterials, 2018, 8, 974.	4.1	17

XIANGXING XU

#	Article	IF	CITATIONS
19	SbSI Nanocrystals: An Excellent Visible Light Photocatalyst with Efficient Generation of Singlet Oxygen. ACS Sustainable Chemistry and Engineering, 2018, 6, 12166-12175.	6.7	27
20	Rational Energy Band Alignment and Au Nanoparticles in Surface Plasmon Enhanced Siâ€Based Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800693.	7.3	32
21	Synthesis and spectroscopic properties of silver-fluorescein co-doped phosphotungstate hollow spheres. Dalton Transactions, 2018, 47, 7730-7738.	3.3	6
22	Ultrafast Solarâ€Blind Ultraviolet Detection by Inorganic Perovskite CsPbX ₃ Quantum Dots Radial Junction Architecture. Advanced Materials, 2017, 29, 1700400.	21.0	129
23	Cesium Lead Halide Perovskite Quantum Dots as a Photoluminescence Probe for Metal Ions. Advanced Materials, 2017, 29, 1700150.	21.0	112
24	A postsynthetic ion exchange method for tunable doping of hydroxyapatite nanocrystals. RSC Advances, 2017, 7, 56537-56542.	3.6	11
25	Controllable synthesis of ultra-small metal–organic framework nanocrystals composed of copper(<scp>ii</scp>) carboxylates. Nanoscale, 2016, 8, 16725-16732.	5.6	22
26	Colloidal Organometal Halide Perovskite (MAPbBrxI3â~'x, 0≤â‰ፄ) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence. Scientific Reports, 2016, 6, 35931.	3.3	22
27	Synthesis of copper micro-rods with layered nano-structure by thermal decomposition of the coordination complex Cu(BTA)2. Nanoscale Research Letters, 2015, 10, 42.	5.7	5
28	Type-II core–shell Si–CdS nanocrystals: synthesis and spectroscopic and electrical properties. Chemical Communications, 2014, 50, 11922-11925.	4.1	11
29	Dual-emission of silicon quantum dots modified by 9-ethylanthracene. Journal of Materials Chemistry C, 2014, 2, 1977-1981.	5.5	18
30	Functionalized silicon quantum dots by N-vinylcarbazole: synthesis and spectroscopic properties. Nanoscale Research Letters, 2014, 9, 384.	5.7	5
31	Exciton Coupling of Surface Complexes on a Nanocrystal Surface. ChemPhysChem, 2014, 15, 2536-2541.	2.1	4
32	Colloidal Nanocrystals Fluoresced by Surface Coordination Complexes. Scientific Reports, 2014, 4, 5480.	3.3	6
33	Monodisperse F-Substituted Hydroxyapatite Single-Crystal Nanotubes with Amphiphilic Surface Properties. Inorganic Chemistry, 2009, 48, 5614-5616.	4.0	43