Giovanna Schiavoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1981047/publications.pdf

Version: 2024-02-01

189892
29
50
h-index
g-index

58 58 all docs docs citations

58 times ranked 9303 citing authors

#	Article	IF	CITATIONS
1	Multi-scale generative adversarial network for improved evaluation of cell–cell interactions observed in organ-on-chip experiments. Neural Computing and Applications, 2021, 33, 3671-3689.	5.6	13
2	A Clonogenic Assay to Quantify Melanoma Micrometastases in Pulmonary Tissue. Methods in Molecular Biology, 2021, 2265, 385-406.	0.9	0
3	Oncoimmunology Meets Organs-on-Chip. Frontiers in Molecular Biosciences, 2021, 8, 627454.	3.5	21
4	Microfluidic Co-Culture Models for Dissecting the Immune Response in in vitro Tumor Microenvironments. Journal of Visualized Experiments, 2021, , .	0.3	5
5	Anticancer Effects of Sublingual Type I IFN in Combination with Chemotherapy in Implantable and Spontaneous Tumor Models. Cells, 2021, 10, 845.	4.1	4
6	Editorial: Emerging Roles for Type 2-Associated Cells and Cytokines in Cancer Immunity. Frontiers in Immunology, 2021, 12, 811125.	4.8	3
7	High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications. Methods in Enzymology, 2020, 632, 479-502.	1.0	7
8	Is There a Role for Basophils in Cancer?. Frontiers in Immunology, 2020, 11, 2103.	4.8	37
9	Anti-Tumorigenic Activities of IL-33: A Mechanistic Insight. Frontiers in Immunology, 2020, 11, 571593.	4.8	19
10	Eosinophils in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1273, 1-28.	1.6	20
11	Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network. Scientific Reports, 2020, 10, 15635.	3.3	8
12	Tumor-Intrinsic or Drug-Induced Immunogenicity Dictates the Therapeutic Success of the PD1/PDL Axis Blockade. Cells, 2020, 9, 940.	4.1	8
13	Multicentre Harmonisation of a Six-Colour Flow Cytometry Panel for NaÃ ⁻ ve/Memory T Cell Immunomonitoring. Journal of Immunology Research, 2020, 2020, 1-15.	2.2	8
14	Basophils in Tumor Microenvironment and Surroundings. Advances in Experimental Medicine and Biology, 2020, 1224, 21-34.	1.6	30
15	IL-33 Promotes CD11b/CD18-Mediated Adhesion of Eosinophils to Cancer Cells and Synapse-Polarized Degranulation Leading to Tumor Cell Killing. Cancers, 2019, 11, 1664.	3.7	45
16	From Petri Dishes to Organ on Chip Platform: The Increasing Importance of Machine Learning and Image Analysis. Frontiers in Pharmacology, 2019, 10, 100.	3.5	26
17	Abstract A091: IL-33 activates antitumoral toxicity in eosinophils through stimulation of contact-dependent degranulation., 2019,,.		O
18	Disruption of IFN-I Signaling Promotes HER2/Neu Tumor Progression and Breast Cancer Stem Cells. Cancer Immunology Research, 2018, 6, 658-670.	3.4	34

#	Article	IF	CITATIONS
19	Eosinophils: The unsung heroes in cancer?. Oncolmmunology, 2018, 7, e1393134.	4.6	184
20	The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Frontiers in Immunology, 2018, 9, 2601.	4.8	74
21	The dangerous liaison between pollens and pollution in respiratory allergy. Annals of Allergy, Asthma and Immunology, 2017, 118, 269-275.	1.0	72
22	IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncolmmunology, 2017, 6, e1317420.	4.6	137
23	Organs on chip approach: a tool to evaluate cancer -immune cells interactions. Scientific Reports, 2017, 7, 12737.	3.3	69
24	Combining Type I Interferons and 5-Aza-2′-Deoxycitidine to Improve Anti-Tumor Response against Melanoma. Journal of Investigative Dermatology, 2017, 137, 159-169.	0.7	60
25	Late Breaking Abstract - Title: Air-born allergens modulate the immunological lung microenvironment. , 2017, , .		0
26	Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis. Oncotarget, 2016, 7, 59754-59765.	1.8	4
27	Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350, 972-978.	12.6	367
28	Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death and Differentiation, 2014, 21, 15-25.	11.2	740
29	A multidisciplinary study using <i>in vivo </i> tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. Journal of Immunotoxicology, 2014, 11, 337-346.	1.7	48
30	Cancer-driven dynamics of immune cells in a microfluidic environment. Scientific Reports, 2014, 4, 6639.	3.3	68
31	Novel allergic asthma model demonstrates ST2-dependent dendritic cell targeting by cypress pollen. Journal of Allergy and Clinical Immunology, 2013, 132, 686-695.e7.	2.9	22
32	<i><i><scp>M</scp>ycobacterium tuberculosis</i><scp>P</scp>st<scp>S</scp>1 amplifies <scp>IFN</scp>â€Î³ and induces <scp>IL</scp>â€17/<scp>IL</scp>â€22 responses by unrelated memory <scp>CD</scp>4⁺<scp>T</scp> cells via dendritic cell activation. European Journal of Immunology, 2013, 43, 2386-2397.</i>	2.9	21
33	Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab on A Chip, 2013, 13, 229-239.	6.0	126
34	TIM-3 as a molecular switch for tumor escape from innate immunity. Frontiers in Immunology, 2013, 3, 418.	4.8	7
35	The Tumor Microenvironment: A Pitch for Multiple Players. Frontiers in Oncology, 2013, 3, 90.	2.8	121
36	Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response. Frontiers in Immunology, 2013, 4, 483.	4.8	113

3

#	Article	IF	Citations
37	The dual role of IRF8 in cancer immunosurveillance. Oncolmmunology, 2013, 2, e25476.	4.6	7
38	Interferon Regulatory Factor 8-Deficiency Determines Massive Neutrophil Recruitment but T Cell Defect in Fast Growing Granulomas during Tuberculosis. PLoS ONE, 2013, 8, e62751.	2.5	6
39	IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment. Neoplasia, 2012, 14, 1223-IN43.	5.3	48
40	Cyclophosphamide Synergizes with Type I Interferons through Systemic Dendritic Cell Reactivation and Induction of Immunogenic Tumor Apoptosis. Cancer Research, 2011, 71, 768-778.	0.9	304
41	Type I IFNs Control Antigen Retention and Survival of CD8α+ Dendritic Cells after Uptake of Tumor Apoptotic Cells Leading to Cross-Priming. Journal of Immunology, 2011, 186, 5142-5150.	0.8	110
42	Regulation of immune cell homeostasis by type I interferons. Cytokine and Growth Factor Reviews, 2010, 21, 227-236.	7.2	34
43	Type I IFN regulate DC turnover <i>in vivo</i> . European Journal of Immunology, 2009, 39, 1807-1818.	2.9	31
44	ICSBP/IRF-8 differentially regulates antigen uptake during dendritic-cell development and affects antigen presentation to CD4+ T cells. Blood, 2006, 108, 609-617.	1.4	25
45	STAT1 Regulates IFN- $\hat{l}\pm\hat{l}^2$ - and IFN- \hat{l}^3 -Dependent Control of Infection with (i) Chlamydia pneumoniae (i) by Nonhemopoietic Cells. Journal of Immunology, 2006, 176, 6982-6990.	0.8	41
46	IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features. Journal of Leukocyte Biology, 2006, 80, 1500-1511.	3.3	50
47	Type I IFN Protects Permissive Macrophages from <i>Legionella pneumophila</i> Infection through an IFN-Î ³ -Independent Pathway. Journal of Immunology, 2004, 173, 1266-1275.	0.8	77
48	ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood, 2004, 103, 2221-2228.	1.4	98
49	ICSBP Is Essential for the Development of Mouse Type I Interferon-producing Cells and for the Generation and Activation of CD8 \hat{l} ±+ Dendritic Cells. Journal of Experimental Medicine, 2002, 196, 1415-1425.	8.5	389
50	Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002, 99, 3263-3271.	1.4	446
51	Type I Interferons Potently Enhance Humoral Immunity and Can Promote Isotype Switching by Stimulating Dendritic Cells In Vivo. Immunity, 2001, 14, 461-470.	14.3	865
52	IL-15 Is Expressed by Dendritic Cells in Response to Type I IFN, Double-Stranded RNA, or Lipopolysaccharide and Promotes Dendritic Cell Activation. Journal of Immunology, 2001, 167, 1179-1187.	0.8	389
53	Cyclophosphamide induces type I interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood, 2000, 95, 2024-2030.	1.4	189
54	Traffic-related NO2 affects expression of Cupressus sempervirens L. pollen allergens. Annals of Agricultural and Environmental Medicine, 0 , , .	1.0	2

#	Article	IF	CITATIONS
55	Differential Effects of Alarmins on Human and Mouse Basophils. Frontiers in Immunology, 0, 13, .	4.8	10