Nolan C Kane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1980376/publications.pdf

Version: 2024-02-01

85541 66343 5,878 110 42 71 citations h-index g-index papers 118 118 118 7704 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial genomes do not appear to regulate flowering pattern / reproductive strategy in Cannabis sativa. AoB PLANTS, 2022, 14, plab068.	2.3	1
2	Effective strategies for isolating DNA from members of Asteraceae with high concentrations of secondary metabolites. BioTechniques, 2022, , .	1.8	7
3	Editorial 2022. Molecular Ecology, 2022, 31, 1-30.	3.9	5
4	Rapid evolutionary changes in gene expression in response to climate fluctuations. Molecular Ecology, 2021, 30, 193-206.	3.9	27
5	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
6	Genetic loci underlying quantitative resistance to necrotrophic pathogens Sclerotinia and Diaporthe (Phomopsis), and correlated resistance to both pathogens. Theoretical and Applied Genetics, 2021, 134, 249-259.	3.6	6
7	Patterns of genetic variation in a prairie wildflower, <i>Silphium integrifolium</i> , suggest a nonâ€prairie origin and locally adaptive variation. American Journal of Botany, 2021, 108, 145-158.	1.7	9
8	Breeding for sustainable oilseed crop yield and quality in a changing climate. Theoretical and Applied Genetics, 2021, 134, 1817-1827.	3.6	19
9	Evolution of pathogen response genes associated with increased disease susceptibility during adaptation to an extreme drought in a Brassica rapa plant population. Bmc Ecology and Evolution, 2021, 21, 61.	1.6	4
10	Widely assumed phenotypic associations in <i>Cannabis sativa</i> lack a shared genetic basis. PeerJ, 2021, 9, e10672.	2.0	18
11	Author response to Tagirdzhanova et al. (2021): "Lichen fungi do not depend on alga for ATP production: A comment on Pogoda et al. (2018)― Molecular Ecology, 2021, 30, 4160-4161.	3.9	1
12	Genomic Evidence That Governmentally Produced Cannabis sativa Poorly Represents Genetic Variation Available in State Markets. Frontiers in Plant Science, 2021, 12, 668315.	3.6	9
13	Aberrant RNA splicing due to genetic incompatibilities in sunflower hybrids. Evolution; International Journal of Organic Evolution, 2021, 75, 2747-2758.	2.3	7
14	Editorial 2021. Molecular Ecology, 2021, 30, 1-25.	3.9	4
15	Mating compatibility and fertility studies in an herbaceous perennial Aster undergoing de novo domestication to enhance agroecosystems. Agronomy for Sustainable Development, 2020, 40, 1.	5.3	8
16	Complete mitochondrial genomes provide current refined phylogenomic hypotheses for relationships among ten Hirundo species. Mitochondrial DNA Part B: Resources, 2020, 5, 2881-2885.	0.4	1
17	A taxonomically broad metagenomic survey of 339 species spanning 57 families suggests cystobasidiomycete yeasts are not ubiquitous across all lichens. American Journal of Botany, 2019, 106, 1090-1095.	1.7	29
18	Extensive chloroplast genome rearrangement amongst three closely related Halamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS ONE, 2019, 14, e0217824.	2.5	16

#	Article	IF	Citations
19	Assessment of the biogeographical variation of seed size and seed oil traits in wild Silphium integrifolium Michx. genotypes. Plant Genetic Resources: Characterisation and Utilisation, 2019, 17, 427-436.	0.8	17
20	Editorial 2019. Molecular Ecology, 2019, 28, 1-28.	3.9	9
21	Genome streamlining via complete loss of introns has occurred multiple times in lichenized fungal mitochondria. Ecology and Evolution, 2019, 9, 4245-4263.	1.9	46
22	The complete mitochondrial genome of Gunnison's prairie dog subspecies (<i>Cynomys gunnisoni) Tj ETQq0 Part B: Resources, 2019, 4, 397-398.</i>	0 0 rgBT 0.4	/Overlock 10 [°] 2
23	Stochastic processes drive rapid genomic divergence during experimental range expansions. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190231.	2.6	8
24	Gene copy number is associated with phytochemistry in Cannabis sativa. AoB PLANTS, 2019, 11, plz074.	2.3	38
25	Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants, 2019, 5, 54-62.	9.3	172
26	Comparative analysis of the mitochondrial genomes of six newly sequenced diatoms reveals group II introns in the barcoding region of cox1. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2019, 30, 43-51.	0.7	24
27	Evidence of substrate endemism of lichens on Fox Hills Sandstone: Discovery and description of Lecanora lendemeri as new to science. Bryologist, 2019, 122, 246.	0.6	5
28	The complete mitochondrial genomes of five lichenized fungi in the genus <i>Usnea</i> (Ascomycota:) Tj ETQq0 (0 0 rgBT /	Overlock 10 ⁻
29	Reductions in complexity of mitochondrial genomes in lichenâ€forming fungi shed light on genome architecture of obligate symbioses. Molecular Ecology, 2018, 27, 1155-1169.	3.9	39
30	Demographic inference in barn swallows using wholeâ€genome data shows signal for bottleneck and subspecies differentiation during the Holocene. Molecular Ecology, 2018, 27, 4200-4212.	3.9	29
31	Genomic insights into the mitochondria of 11 eastern North American species of <i>Cladonia</i> Mitochondrial DNA Part B: Resources, 2018, 3, 508-512.	0.4	10
32	Diversity and evolution of the repetitive genomic content in Cannabis sativa. BMC Genomics, 2018, 19, 156.	2.8	31
33	Two contrasting laboratory methods improve Silphium integrifolium Michx. germination rate to agronomically acceptable levels. Euphytica, 2018, 214, 1.	1.2	6
34	Genetics of alternative splicing evolution during sunflower domestication. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6768-6773.	7.1	40
35	Lecanora markjohnstonii (Lecanoraceae, lichenized Ascomycetes), a new sorediate crustose lichen from the southeastern United States. Bryologist, 2018, 121, 498-512.	0.6	10
36	Following the Fate of Facilitated Migration In A Small Desert Spring. Southwestern Naturalist, 2018, 63, 8.	0.1	0

#	Article	IF	Citations
37	Compromised External Validity: Federally Produced Cannabis Does Not Reflect Legal Markets. Scientific Reports, 2017, 7, 46528.	3.3	73
38	The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 2017, 546, 148-152.	27.8	579
39	Effects of assortative mate choice on the genomic and morphological structure of a hybrid zone between two bird subspecies. Molecular Ecology, 2017, 26, 6430-6444.	3.9	34
40	Genomic variation across two barn swallow hybrid zones reveals traits associated with divergence in sympatry and allopatry. Molecular Ecology, 2017, 26, 5676-5691.	3.9	48
41	Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, <i>Helianthus annuus</i> New Phytologist, 2017, 214, 412-423.	7.3	185
42	Accelerating <i>Silphium</i> Domestication: An Opportunity to Develop New Crop Ideotypes and Breeding Strategies Informed by Multiple Disciplines. Crop Science, 2017, 57, 1274-1284.	1.8	61
43	Genetic Architecture of Capitate Glandular Trichome Density in Florets of Domesticated Sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2017, 8, 2227.	3.6	7
44	The complete mitochondrial genome for <i>Cannabis sativa</i> . Mitochondrial DNA Part B: Resources, 2016, 1, 715-716.	0.4	16
45	Genetic and Genomic Tools for <i>Cannabis sativa </i> . Critical Reviews in Plant Sciences, 2016, 35, 364-377.	5.7	70
46	Current and Future Needs and Applications for Cannabis. Critical Reviews in Plant Sciences, 2016, 35, 425-426.	5.7	8
47	Genomic and Chemical Diversity in <i>Cannabis</i> . Critical Reviews in Plant Sciences, 2016, 35, 349-363.	5.7	115
48	Complete Mitochondrial Genome Sequence of Sunflower (<i>Helianthus annuus</i> L.). Genome Announcements, 2016, 4, .	0.8	13
49	Rapid genomeâ€wide evolution in <i>Brassica rapa</i> populations following drought revealed by sequencing of ancestral and descendant gene pools. Molecular Ecology, 2016, 25, 3622-3631.	3.9	79
50	The complete chloroplast genomes of <i>Cannabis sativa</i> and <i>Humulus lupulus</i> . Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3793-3794.	0.7	35
51	The complete mitochondrial genome of the Warm Springs pupfish, Cyprinodon nevadensis pectoralis. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 2349-2350.	0.7	5
52	Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Molecular Ecology, 2015, 24, 1873-1888.	3.9	106
53	Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus) Tj ETQq $1\ 1\ 0.784$	314 rgBT / 3.6	Overlock 10
54	Genome scans reveal candidate domestication and improvement genes in cultivated sunflower, as well as postâ€domestication introgression with wild relatives. New Phytologist, 2015, 206, 830-838.	7.3	79

#	Article	IF	CITATIONS
55	Quantitative trait locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower. Molecular Ecology, 2015, 24, 2194-2211.	3.9	59
56	Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Frontiers in Microbiology, 2014, 5, 698.	3.5	62
57	Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L.) Genome. Biology, 2014, 3, 295-319.	2.8	16
58	Bridging physiological and evolutionary timeâ€scales in a gene regulatory network. New Phytologist, 2014, 203, 685-696.	7.3	15
59	Genomics of <scp>C</scp> ompositae crops: reference transcriptome assemblies and evidence of hybridization with wild relatives. Molecular Ecology Resources, 2014, 14, 166-177.	4.8	45
60	Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytologist, 2014, 201, 1021-1030.	7.3	151
61	Editorial 2014. Molecular Ecology, 2014, 23, 1-15.	3.9	1
62	The genomics of adaptation, divergence and speciation: a congealing theory. Molecular Ecology, 2014, 23, 3938-3940.	3.9	7
63	Transposon fingerprinting using low coverage whole genome shotgun sequencing in Cacao (Theobroma cacao L.) and related species. BMC Genomics, 2013, 14, 502.	2.8	15
64	Complex origin of Trinitario-type Theobroma cacao (Malvaceae) from Trinidad and Tobago revealed using plastid genomics. Tree Genetics and Genomes, 2013, 9, 829-840.	1.6	18
65	The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics, 2013, 14, 686.	2.8	52
66	Sunflower genetic, genomic and ecological resources. Molecular Ecology Resources, 2013, 13, 10-20.	4.8	59
67	Recent nonhybrid origin of sunflower ecotypes in a novel habitat. Molecular Ecology, 2013, 22, 799-813.	3.9	47
68	Editorial 2013. Molecular Ecology, 2013, 22, 1-14.	3.9	1
69	A road map for molecular ecology. Molecular Ecology, 2013, 22, 2605-2626.	3.9	100
70	RNA-Seq Analysis of Allele-Specific Expression, Hybrid Effects, and Regulatory Divergence in Hybrids Compared with Their Parents from Natural Populations. Genome Biology and Evolution, 2013, 5, 1309-1323.	2.5	131
71	Mandated data archiving greatly improves access to research data. FASEB Journal, 2013, 27, 1304-1308.	0.5	139
72	Ultraâ€barcoding in cacao (<i>Theobroma</i> spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. American Journal of Botany, 2012, 99, 320-329.	1.7	228

#	Article	IF	Citations
73	Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program <scp>structure</scp> . Molecular Ecology, 2012, 21, 4925-4930.	3.9	236
74	The sunflower (<i>Helianthus annuus</i> L.) genome reflects a recent history of biased accumulation of transposable elements. Plant Journal, 2012, 72, 142-153.	5.7	88
75	Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. American Journal of Botany, 2012, 99, 209-218.	1.7	80
76	Preparation of Normalized cDNA Libraries for 454 Titanium Transcriptome Sequencing. Methods in Molecular Biology, 2012, 888, 119-133.	0.9	12
77	The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq. Biology, 2012, 1, 575-596.	2.8	34
78	Editorial 2012. Molecular Ecology, 2012, 21, 1-22.	3.9	14
79	REDUCED DROUGHT TOLERANCE DURING DOMESTICATION AND THE EVOLUTION OF WEEDINESS RESULTS FROM TOLERANCE-GROWTH TRADE-OFFS. Evolution; International Journal of Organic Evolution, 2012, 66, 3803-3814.	2.3	80
80	Editorial - 20 years of Molecular Ecology. Molecular Ecology, 2011, 20, 1-21.	3.9	8
81	Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress. Molecular Ecology, 2011, 20, 4683-4694.	3.9	68
82	Effective Population Size Is Positively Correlated with Levels of Adaptive Divergence among Annual Sunflowers. Molecular Biology and Evolution, 2011, 28, 1569-1580.	8.9	88
83	Sunflower domestication alleles support single domestication center in eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14360-14365.	7.1	97
84	Molecular Evolution across the Asteraceae: Micro- and Macroevolutionary Processes. Molecular Biology and Evolution, 2011, 28, 3225-3235.	8.9	19
85	Editorial and retrospective 2010. Molecular Ecology, 2010, 19, 1-22.	3.9	11
86	The genetics of adaptation to novel environments: selection on germination timing in Arabidopsis thaliana. Molecular Ecology, 2010, 19, 1270-1272.	3.9	6
87	Pushing north one bottleneck at a time: site frequency spectra tell the history of Sitka spruce. Molecular Ecology, 2010, 19, 3837-3839.	3.9	0
88	EvoPipes.net: Bioinformatic Tools for Ecological and Evolutionary Genomics. Evolutionary Bioinformatics, 2010, 6, EBO.S5861.	1.2	83
89	Establishing genomic tools and resources for ⟨i⟩Guizotia abyssinica⟨/i⟩ (L.f.) Cass.â€"the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Molecular Ecology Resources, 2010, 10, 1048-1058.	4.8	52
90	Editorial and retrospective 2008. Molecular Ecology, 2009, 18, 1-13.	3.9	16

#	Article	IF	CITATIONS
91	Using parentage analysis to examine gene flow and spatial genetic structure. Molecular Ecology, 2009, 18, 1551-1552.	3.9	6
92	Plant genomes do a balancing act. Molecular Ecology, 2009, 18, 2743-2745.	3.9	3
93	COMPARATIVE GENOMIC AND POPULATION GENETIC ANALYSES INDICATE HIGHLY POROUS GENOMES AND HIGH LEVELS OF GENE FLOW BETWEEN DIVERGENT<1>HELIANTHUS Journal of Organic Evolution, 2009, 63, 2061-2075.	2.3	107
94	Genetics and evolution of weedy <i>Helianthus annuus</i> populations: adaptation of an agricultural weed. Molecular Ecology, 2008, 17, 384-394.	3.9	74
95	Botany without borders: barcoding in focus. Molecular Ecology, 2008, 17, 5175-5176.	3.9	54
96	Natural Variation in Gene Expression Between Wild and Weedy Populations of <i>Helianthus annuus</i> . Genetics, 2008, 179, 1881-1890.	2.9	64
97	Multiple Paleopolyploidizations during the Evolution of the Compositae Reveal Parallel Patterns of Duplicate Gene Retention after Millions of Years. Molecular Biology and Evolution, 2008, 25, 2445-2455.	8.9	322
98	Selective Sweeps Reveal Candidate Genes for Adaptation to Drought and Salt Tolerance in Common Sunflower, Helianthus annuus. Genetics, 2007, 175, 1823-1834.	2.9	112
99	Rampant Gene Exchange Across a Strong Reproductive Barrier Between the Annual Sunflowers, Helianthus annuus and H. petiolaris. Genetics, 2007, 175, 1883-1893.	2.9	154
100	The origins of weedy rice. Molecular Ecology, 2007, 16, 4423-4425.	3.9	17
101	Maize Genetics: The Treasure of the Sierra Madre. Current Biology, 2005, 15, R137-R139.	3.9	1
102	Frequency and Microenvironmental Pattern of Selection on Plastic Shadeâ€Avoidance Traits in a Natural Population ofImpatiens capensis. American Naturalist, 2004, 163, 548-563.	2.1	92
103	SELECTION ON LEAF ECOPHYSIOLOGICAL TRAITS IN A DESERT HYBRID HELIANTHUS SPECIES AND EARLY-GENERATION HYBRIDS. Evolution; International Journal of Organic Evolution, 2004, 58, 2682.	2.3	9
104	TESTING ADAPTIVE PLASTICITY TO UV: COSTS AND BENEFITS OF STEM ELONGATION AND LIGHT-INDUCED PHENOLICS. Evolution; International Journal of Organic Evolution, 2004, 58, 2645.	2.3	2
105	Reconstructing the Origin ofHelianthus deserticola: Survival and Selection on the Desert Floor. American Naturalist, 2004, 164, 145-156.	2.1	64
106	TESTING ADAPTIVE PLASTICITY TO UV: COSTS AND BENEFITS OF STEM ELONGATION AND LIGHT-INDUCED PHENOLICS. Evolution; International Journal of Organic Evolution, 2004, 58, 2645-2656.	2.3	40
107	SELECTION ON LEAF ECOPHYSIOLOGICAL TRAITS IN A DESERT HYBRID HELIANTHUS SPECIES AND EARLY-GENERATION HYBRIDS. Evolution; International Journal of Organic Evolution, 2004, 58, 2682-2692.	2.3	74
108	Heterogeneous Selection at Specific Loci in Natural Environments in $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$. Genetics, 2003, 165, 321-329.	2.9	119

#	Article	IF	CITATION
109	Novel Loci Control Variation in Reproductive Timing in <i>Arabidopsis thaliana</i> in Natural Environments. Genetics, 2002, 162, 1875-1884.	2.9	144
110	Empirical test of increasing genetic variation via interâ€population crossing for native plant restoration in variable environments. Restoration Ecology, 0, , .	2.9	1