Samuel P Hazen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979510/publications.pdf

Version: 2024-02-01

218677 330143 2,619 37 26 37 h-index citations g-index papers 39 39 39 3990 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Brachypodium: 20 years as a grass biology model system; the way forward?. Trends in Plant Science, 2022, 27, 1002-1016.	8.8	21
2	Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nature Communications, 2020, 11 , 3670.	12.8	67
3	Changes in ambient temperature are the prevailing cue in determining <i>Brachypodium distachyon</i> diurnal gene regulation. New Phytologist, 2020, 227, 1709-1724.	7.3	16
4	Grass secondary cell walls, <i>Brachypodium distachyon</i> as a model for discovery. New Phytologist, 2020, 227, 1649-1667.	7.3	40
5	Regulation of Cell Wall Thickening by a Medley of Mechanisms. Trends in Plant Science, 2019, 24, 853-866.	8.8	34
6	Rice Genome-Scale Network Integration Reveals Transcriptional Regulators of Grass Cell Wall Synthesis. Frontiers in Plant Science, 2019, 10, 1275.	3.6	14
7	A stressâ€associated protein, AtSAP13, from <scp><i>Arabidopsis thaliana</i></scp> provides tolerance to multiple abiotic stresses. Plant, Cell and Environment, 2018, 41, 1171-1185.	5.7	52
8	Secondary Wall Regulating NACs Differentially Bind at the Promoter at a CELLULOSE SYNTHASE A4 Cis-eQTL. Frontiers in Plant Science, 2018, 9, 1895.	3.6	11
9	Climate-smart crops with enhanced photosynthesis. Journal of Experimental Botany, 2018, 69, 3801-3809.	4.8	50
10	<i><i><scp>SECONDARY WALL ASSOCIATED MYB</scp>1</i> is a positive regulator of secondary cell wall thickening in <i>Brachypodium distachyon</i> and is not found in the Brassicaceae. Plant Journal, 2018, 96, 532-545.</i>	5.7	20
11	A cell wall reference profile for <i>Miscanthus</i> bioenergy crops highlights compositional and structural variations associated withÂdevelopment and organ origin. New Phytologist, 2017, 213, 1710-1725.	7.3	44
12	Direct Image-Based Enumeration of Clostridium phytofermentans Cells on Insoluble Plant Biomass Growth Substrates. Applied and Environmental Microbiology, 2016, 82, 972-978.	3.1	1
13	Environmental niche variation and evolutionary diversification of the <i>Brachypodium distachyon</i> grass complex species in their native circumâ€Mediterranean range. American Journal of Botany, 2015, 102, 1073-1088.	1.7	73
14	Daily Changes in Temperature, Not the Circadian Clock, Regulate Growth Rate in Brachypodium distachyon. PLoS ONE, 2014, 9, e100072.	2.5	47
15	Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus. Annals of Botany, 2014, 114, 1265-1277.	2.9	56
16	PIL1 Participates in a Negative Feedback Loop that Regulates Its Own Gene Expression in Response to Shade. Molecular Plant, 2014, 7, 1582-1585.	8.3	27
17	Perturbation ofBrachypodium distachyon CELLULOSE SYNTHASE A4or7results in abnormal cell walls. BMC Plant Biology, 2013, 13, 131.	3.6	81
18	Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnology, 2013, 13, 61.	3.3	84

#	Article	lF	Citations
19	Lignocellulosic feedstocks: research progress and challenges in optimizing biomass quality and yield. Frontiers in Plant Science, 2013, 4, 474.	3.6	21
20	Cell Walls and the Developmental Anatomy of the Brachypodium distachyon Stem Internode. PLoS ONE, 2013, 8, e80640.	2.5	34
21	A High-Throughput Biological Conversion Assay for Determining Lignocellulosic Quality. Methods in Molecular Biology, 2012, 918, 341-349.	0.9	5
22	Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnology for Biofuels, 2012, 5, 5.	6.2	28
23	Transcriptional Regulation of Grass Secondary Cell Wall Biosynthesis: Playing Catch-Up with Arabidopsis thaliana. Frontiers in Plant Science, 2012, 3, 74.	3.6	61
24	Brachypodium as a Model for the Grasses: Today and the Future Â. Plant Physiology, 2011, 157, 3-13.	4.8	243
25	Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biology, 2009, 10, R17.	9.6	103
26	Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules. PLoS Genetics, 2008, 4, e14.	3.5	474
27	A Morning-Specific Phytohormone Gene Expression Program underlying Rhythmic Plant Growth. PLoS Biology, 2008, 6, e225.	5.6	197
28	A High-Resolution Map of Arabidopsis Recombinant Inbred Lines by Whole-Genome Exon Array Hybridization. PLoS Genetics, 2006, 2, e144.	3.5	97
29	Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Functional and Integrative Genomics, 2005, 5, 104-116.	3.5	103
30	Rapid Array Mapping of Circadian Clock and Developmental Mutations in Arabidopsis. Plant Physiology, 2005, 138, 990-997.	4.8	85
31	Gene expression profiling of plant responses to abiotic stress. Functional and Integrative Genomics, 2003, 3, 105-111.	3.5	84
32	Gene arrays are not just for measuring gene expression. Trends in Plant Science, 2003, 8, 413-416.	8.8	47
33	Quantitative Trait Loci and Comparative Genomics of Cereal Cell Wall Composition. Plant Physiology, 2003, 132, 263-271.	4.8	64
34	Cellulose Synthase-Like Genes of Rice. Plant Physiology, 2002, 128, 336-340.	4.8	178
35	AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution. Euphytica, 2002, 125, 89-102.	1.2	29
36	Title is missing!. Genetic Resources and Crop Evolution, 2002, 49, 439-448.	1.6	9

#	Article	IF	CITATIONS
37	Cellulose Synthase-Like Genes of Rice. Plant Physiology, 2002, 128, 336-340.	4.8	14