Aristidis Moustakas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979256/publications.pdf Version: 2024-02-01

		34105	19190
120	14,886	52	118
papers	citations	h-index	g-index
121	121	121	19699
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The protein kinase LKB1 promotes selfâ€renewal and blocks invasiveness in glioblastoma. Journal of Cellular Physiology, 2022, 237, 743-762.	4.1	8
2	Dual inhibition of TGFâ€Î² and PDâ€L1: a novel approach to cancer treatment. Molecular Oncology, 2022, 16, 2117-2134.	4.6	53
3	TGFβ selects for proâ€stemness over proâ€invasive phenotypes during cancer cell epithelial–mesenchymal transition. Molecular Oncology, 2022, 16, 2330-2354.	4.6	5
4	Extracellular Vesicles and Transforming Growth Factor Î ² Signaling in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 849938.	3.7	14
5	The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor \hat{l}^2 signaling. Oncogene, 2021, 40, 3748-3765.	5.9	18
6	NUAK1 and NUAK2 Fine-Tune TGF-Î ² Signaling. Cancers, 2021, 13, 3377.	3.7	9
7	Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Frontiers in Pharmacology, 2021, 12, 723798.	3.5	13
8	BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells. Cellular Signalling, 2021, 87, 110146.	3.6	11
9	The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma. Cell Death and Disease, 2021, 12, 932.	6.3	5
10	Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. International Journal of Molecular Sciences, 2020, 21, 7371.	4.1	19
11	BMP signaling is a therapeutic target in ovarian cancer. Cell Death Discovery, 2020, 6, 139.	4.7	22
12	TGF-β Signaling. Biomolecules, 2020, 10, 487.	4.0	347
13	Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential. Matrix Biology Plus, 2020, 6-7, 100033.	3.5	10
14	TGFβ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 2020, 39, 4436-4449.	5.9	52
15	Long nonâ€coding RNAs and TGFâ€Î² signaling in cancer. Cancer Science, 2020, 111, 2672-2681.	3.9	38
16	The TGFB2-AS1 lncRNA Regulates TGF-Î ² Signaling by Modulating Corepressor Activity. Cell Reports, 2019, 28, 3182-3198.e11.	6.4	26
17	LXRα limits TGFβ-dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis, 2019, 8, 36.	4.9	33
18	TANKâ€binding kinase 1 is a mediator of plateletâ€induced EMT in mammary carcinoma cells. FASEB Journal, 2019. 33. 7822-7832.	0.5	23

ARISTIDIS MOUSTAKAS

#	Article	IF	CITATIONS
19	JNK-Dependent cJun Phosphorylation Mitigates TGFÎ ² - and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses. Cells, 2019, 8, 1481.	4.1	11
20	Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer. Matrix Biology, 2019, 80, 29-45.	3.6	43
21	Upregulated BMP-Smad signaling activity in the glucuronyl C5-epimerase knock out MEF cells. Cellular Signalling, 2019, 54, 122-129.	3.6	5
22	Transforming growth factor β (TGFβ) induces NUAK kinase expression to fine-tune its signaling output. Journal of Biological Chemistry, 2019, 294, 4119-4136.	3.4	20
23	Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma. Cell Death and Differentiation, 2018, 25, 885-903.	11.2	34
24	Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases. Scientific Reports, 2018, 8, 5531.	3.3	29
25	Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells. Oncogene, 2018, 37, 2515-2531.	5.9	46
26	TGF-β Family Signaling in Epithelial Differentiation and Epithelial–Mesenchymal Transition. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022194.	5.5	90
27	TGF-Î ² Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2018, 10, a031997.	5.5	21
28	Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. International Journal of Molecular Sciences, 2018, 19, 3672.	4.1	117
29	Genome–wide binding of transcription factor ZEB1 in tripleâ€negative breast cancer cells. Journal of Cellular Physiology, 2018, 233, 7113-7127.	4.1	32
30	Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biology, 2018, 74, 35-51.	3.6	53
31	TGF-Î ² and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. International Journal of Molecular Sciences, 2018, 19, 1294.	4.1	231
32	Genomewide binding of transcription factor Snail1 in tripleâ€negative breast cancer cells. Molecular Oncology, 2018, 12, 1153-1174.	4.6	22
33	The protein kinase SIK downregulates the polarity protein Par3. Oncotarget, 2018, 9, 5716-5735.	1.8	11
34	Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer. Cancer Research, 2017, 77, 1730-1740.	0.9	29
35	Epithelial–mesenchymal transition in cancer. Molecular Oncology, 2017, 11, 715-717.	4.6	47
36	Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1. Molecular Cell, 2017, 68, 847-859.e7.	9.7	53

#	Article	IF	CITATIONS
37	Mechanisms of TGFβ-Induced Epithelial–Mesenchymal Transition. Journal of Clinical Medicine, 2016, 5, 63.	2.4	194
38	Commercially Available Preparations of Recombinant Wnt3a Contain Nonâ€Wnt Related Activities Which May Activate TGFâ€Î² Signaling. Journal of Cellular Biochemistry, 2016, 117, 938-945.	2.6	8
39	Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation. Scientific Reports, 2016, 6, 29868.	3.3	9
40	In vitro and ex vivo vanadium antitumor activity in (TGF-β)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients. International Journal of Biochemistry and Cell Biology, 2016, 74, 121-134.	2.8	33
41	Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine and Growth Factor Reviews, 2016, 27, 81-92.	7.2	78
42	Single Chain Antibodies as Tools to Study transforming growth factor-Î ² -Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens. Molecular and Cellular Proteomics, 2016, 15, 1848-1856.	3.8	10
43	Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. Journal of Biological Chemistry, 2016, 291, 12706-12723.	3.4	6
44	Signaling Receptors for TGF-β Family Members. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022053.	5.5	480
45	Transforming growth factor \hat{I}^2 as regulator of cancer stemness and metastasis. British Journal of Cancer, 2016, 115, 761-769.	6.4	189
46	Ras and TGF-Î ² signaling enhance cancer progression by promoting the ΔNp63 transcriptional program. Science Signaling, 2016, 9, ra84.	3.6	33
47	The rationale for targeting <scp>TGF</scp> â€Î² in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	3.4	60
48	Analysis of Epithelial–Mesenchymal Transition Induced by Transforming Growth Factor β. Methods in Molecular Biology, 2016, 1344, 147-181.	0.9	23
49	The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling. Oncotarget, 2016, 7, 1120-1143.	1.8	17
50	Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biology, 2015, 43, 42-60.	3.6	140
51	The mitotic checkpoint protein kinase BUB1 is an engine in the TGF-β signaling apparatus. Science Signaling, 2015, 8, fs1.	3.6	8
52	Reprogramming during epithelial to mesenchymal transition under the control of TGFÎ ² . Cell Adhesion and Migration, 2015, 9, 233-246.	2.7	82
53	MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nature Communications, 2015, 6, 7743.	12.8	534
54	The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition. Nucleic Acids Research, 2015, 43, 162-178.	14.5	69

#	Article	IF	CITATIONS
55	Transforming growth factor β and bone morphogenetic protein actions in brain tumors. FEBS Letters, 2015, 589, 1588-1597.	2.8	32
56	Tamoxifen Inhibits TGFâ€Î²â€Mediated Activation of Myofibroblasts by Blocking Nonâ€&mad Signaling Through ERK1/2. Journal of Cellular Physiology, 2015, 230, 3084-3092.	4.1	69
57	Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling. PLoS ONE, 2014, 9, e103651.	2.5	19
58	Invasive cells follow Snail's slow and persistent pace. Cell Cycle, 2014, 13, 2320-2321.	2.6	3
59	Nucleosome regulatory dynamics in response to TGFÂ. Nucleic Acids Research, 2014, 42, 6921-6934.	14.5	6
60	TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2621-2634.	2.4	116
61	Coordination of TGF-Î ² Signaling by Ubiquitylation. Molecular Cell, 2013, 51, 555-556.	9.7	11
62	p53 regulates epithelial–mesenchymal transition induced by transforming growth factor β. Journal of Cellular Physiology, 2013, 228, 801-813.	4.1	37
63	Regulation of Transcription Factor Twist Expression by the DNA Architectural Protein High Mobility Group A2 during Epithelial-to-Mesenchymal Transition. Journal of Biological Chemistry, 2012, 287, 7134-7145.	3.4	94
64	Transcriptional Induction of Salt-inducible Kinase 1 by Transforming Growth Factor Î ² Leads to Negative Regulation of Type I Receptor Signaling in Cooperation with the Smurf2 Ubiquitin Ligase. Journal of Biological Chemistry, 2012, 287, 12867-12878.	3.4	27
65	Context-dependent Action of Transforming Growth Factor β Family Members on Normal and Cancer Stem Cells. Current Pharmaceutical Design, 2012, 18, 4072-4086.	1.9	22
66	Induction of epithelial–mesenchymal transition by transforming growth factor β. Seminars in Cancer Biology, 2012, 22, 446-454.	9.6	123
67	Regulation of EMT by TGFÎ ² in cancer. FEBS Letters, 2012, 586, 1959-1970.	2.8	435
68	Role of Smads in TGFÎ ² signaling. Cell and Tissue Research, 2012, 347, 21-36.	2.9	291
69	Role of TGF-β signaling in EMT, cancer progression and metastasis. Drug Discovery Today: Disease Models, 2011, 8, 121-126.	1.2	3
70	Regulation of Myosin Light Chain Function by BMP Signaling Controls Actin Cytoskeleton Remodeling. Cellular Physiology and Biochemistry, 2011, 28, 1031-1044.	1.6	37
71	The Notch and TGF-β Signaling Pathways Contribute to the Aggressiveness of Clear Cell Renal Cell Carcinoma. PLoS ONE, 2011, 6, e23057.	2.5	56
72	Negative Regulation of TGFÎ ² Signaling by the Kinase LKB1 and the Scaffolding Protein LIP1. Journal of Biological Chemistry, 2011, 286, 341-353.	3.4	50

#	Article	IF	CITATIONS
73	TGFβ Activates Mitogen- and Stress-activated Protein Kinase-1 (MSK1) to Attenuate Cell Death*. Journal of Biological Chemistry, 2011, 286, 5003-5011.	3.4	26
74	TGFβ-induced Early Activation of the Small GTPase RhoA is Smad2/3-independent and Involves Src and the Guanine Nucleotide Exchange Factor Vav2. Cellular Physiology and Biochemistry, 2011, 28, 229-238.	1.6	20
75	Transforming Growth Factor Î ² Promotes Complexes between Smad Proteins and the CCCTC-binding Factor on the H19 Imprinting Control Region Chromatin. Journal of Biological Chemistry, 2010, 285, 19727-19737.	3.4	30
76	Integrins open the way to epithelial-mesenchymal transitions. Cell Cycle, 2010, 9, 1678-1683.	2.6	1
77	PARP-1 Attenuates Smad-Mediated Transcription. Molecular Cell, 2010, 40, 521-532.	9.7	119
78	Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evolutionary Biology, 2009, 9, 28.	3.2	137
79	Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Current Opinion in Cell Biology, 2009, 21, 166-176.	5.4	587
80	Regulating the stability of TGF \hat{I}^2 receptors and Smads. Cell Research, 2009, 19, 21-35.	12.0	170
81	A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biology, 2009, 11, 943-950.	10.3	585
82	Control of transforming growth factor Î ² signal transduction by small GTPases. FEBS Journal, 2009, 276, 2947-2965.	4.7	88
83	Epithelial–Mesenchymal Transition as a Mechanism of Metastasis. , 2009, , 65-92.		0
84	The regulation of TGFÎ ² signal transduction. Development (Cambridge), 2009, 136, 3699-3714.	2.5	716
85	Dynamic control of TGFâ€Î² signaling and its links to the cytoskeleton. FEBS Letters, 2008, 582, 2051-2065.	2.8	92
86	TGF-β Targets PAX3 to Control Melanocyte Differentiation. Developmental Cell, 2008, 15, 797-799.	7.0	21
87	TCFβ induces SIK to negatively regulate type I receptor kinase signaling. Journal of Cell Biology, 2008, 182, 655-662.	5.2	69
88	HMGA2 and Smads Co-regulate SNAIL1 Expression during Induction of Epithelial-to-Mesenchymal Transition. Journal of Biological Chemistry, 2008, 283, 33437-33446.	3.4	310
89	Cancer-Associated Fibroblasts and the Role of TGF-β. , 2008, , 417-441.		0
90	Notch signaling is necessary for epithelial growth arrest by TGF-β. Journal of Cell Biology, 2007, 176, 695-707.	5.2	126

#	Article	IF	CITATIONS
91	Functional role of Meox2 during the epithelial cytostatic response to TGF-β. Molecular Oncology, 2007, 1, 55-71.	4.6	35
92	Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 2007, 98, 1512-1520.	3.9	722
93	Actions of TGF-Î ² as tumor suppressor and pro-metastatic factor in human cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 21-62.	7.4	350
94	A New Twist in Smad Signaling. Developmental Cell, 2006, 10, 685-686.	7.0	17
95	The Mechanism of Nuclear Export of Smad3 Involves Exportin 4 and Ran. Molecular and Cellular Biology, 2006, 26, 1318-1332.	2.3	78
96	Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition. Journal of Cell Biology, 2006, 174, 175-183.	5.2	457
97	Smad pathwayâ€specific transcriptional regulation of the cell cycle inhibitor p21 ^{WAF1/Cip1} . Journal of Cellular Physiology, 2005, 204, 260-272.	4.1	102
98	BMP Signaling in Osteogenesis, Bone Remodeling and Repair. European Journal of Trauma and Emergency Surgery, 2005, 31, 464-479.	0.3	16
99	LIM-kinase 2 and Cofilin Phosphorylation Mediate Actin Cytoskeleton Reorganization Induced by Transforming Growth Factor-I ² . Journal of Biological Chemistry, 2005, 280, 11448-11457.	3.4	162
100	Non-Smad TGF-Î ² signals. Journal of Cell Science, 2005, 118, 3573-3584.	2.0	976
101	TGF-β and the Smad Signaling Pathway Support Transcriptomic Reprogramming during Epithelial-Mesenchymal Cell Transition. Molecular Biology of the Cell, 2005, 16, 1987-2002.	2.1	530
102	Hyaluronan Fragments Induce Endothelial Cell Differentiation in a CD44- and CXCL1/GRO1-dependent Manner. Journal of Biological Chemistry, 2005, 280, 24195-24204.	3.4	118
103	Degradation of the Tumor Suppressor Smad4 by WW and HECT Domain Ubiquitin Ligases. Journal of Biological Chemistry, 2005, 280, 22115-22123.	3.4	171
104	Receptor Serine/Threonine Kinases. , 2005, , 1603-1608.		1
105	Id2 and Id3 Define the Potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor β and Bone Morphogenetic Protein. Molecular and Cellular Biology, 2004, 24, 4241-4254.	2.3	318
106	Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling. BMC Cell Biology, 2004, 5, 2.	3.0	37
107	The nuts and bolts of IRF structure. Nature Structural and Molecular Biology, 2003, 10, 874-876.	8.2	8
108	Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation. Molecular and Cellular Biology, 2003, 23, 4494-4510.	2.3	153

ARISTIDIS MOUSTAKAS

#	Article	IF	CITATIONS
109	Mechanism of a Transcriptional Cross Talk between Transforming Growth Factor-β–regulated Smad3 and Smad4 Proteins and Orphan Nuclear Receptor Hepatocyte Nuclear Factor-4. Molecular Biology of the Cell, 2003, 14, 1279-1294.	2.1	49
110	Differential Ubiquitination Defines the Functional Status of the Tumor Suppressor Smad4. Journal of Biological Chemistry, 2003, 278, 33571-33582.	3.4	91
111	Functions of Transforming Growth Factor-Î ² Family Type I Receptors and Smad Proteins in the Hypertrophic Maturation and Osteoblastic Differentiation of Chondrocytes. Journal of Biological Chemistry, 2002, 277, 33545-33558.	3.4	116
112	From mono- to oligo-Smads: The heart of the matter in TGF-beta signal transduction. Genes and Development, 2002, 16, 1867-1871.	5.9	73
113	TGF-β signaling from a three-dimensional perspective: insight into selection of partners. Trends in Cell Biology, 2002, 12, 304-307.	7.9	36
114	Mechanisms of TGF-β signaling in regulation of cell growth and differentiation. Immunology Letters, 2002, 82, 85-91.	2.5	473
115	Transforming Growth Factor-β Induces Nuclear Import of Smad3 in an Importin-β1 and Ran-dependent Manner. Molecular Biology of the Cell, 2001, 12, 1079-1091.	2.1	163
116	Smad regulation in TGF- \hat{I}^2 signal transduction. Journal of Cell Science, 2001, 114, 4359-4369.	2.0	802
117	Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene, 2000, 19, 4396-4404.	5.9	86
118	Role of Smad Proteins and Transcription Factor Sp1 in p21Waf1/Cip1 Regulation by Transforming Growth Factor-β. Journal of Biological Chemistry, 2000, 275, 29244-29256.	3.4	347
119	c-Jun Transactivates the Promoter of the Human p21 Gene by Acting as a Superactivator of the Ubiquitous Transcription Factor Sp1. Journal of Biological Chemistry, 1999, 274, 29572-29581.	3.4	179
120	The Soluble Exoplasmic Domain of the Type II Transforming Growth Factor (TGF)-Î ² Receptor. Journal of Biological Chemistry, 1995, 270, 2747-2754.	3.4	108