Aristidis Moustakas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979256/publications.pdf

Version: 2024-02-01

120 papers 14,886 citations

52 h-index 19190 118 g-index

121 all docs

121 docs citations

times ranked

121

19699 citing authors

#	Article	IF	CITATIONS
1	Non-Smad TGF- \hat{l}^2 signals. Journal of Cell Science, 2005, 118 , 3573 - 3584 .	2.0	976
2	Smad regulation in TGF-Î ² signal transduction. Journal of Cell Science, 2001, 114, 4359-4369.	2.0	802
3	Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 2007, 98, 1512-1520.	3.9	722
4	The regulation of $TGF\hat{l}^2$ signal transduction. Development (Cambridge), 2009, 136, 3699-3714.	2.5	716
5	Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Current Opinion in Cell Biology, 2009, 21, 166-176.	5.4	587
6	A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biology, 2009, 11, 943-950.	10.3	585
7	MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nature Communications, 2015, 6, 7743.	12.8	534
8	TGF- \hat{l}^2 and the Smad Signaling Pathway Support Transcriptomic Reprogramming during Epithelial-Mesenchymal Cell Transition. Molecular Biology of the Cell, 2005, 16, 1987-2002.	2.1	530
9	Signaling Receptors for TGF-Î ² Family Members. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022053.	5.5	480
10	Mechanisms of TGF- \hat{l}^2 signaling in regulation of cell growth and differentiation. Immunology Letters, 2002, 82, 85-91.	2.5	473
11	Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition. Journal of Cell Biology, 2006, 174, 175-183.	5.2	457
12	Regulation of EMT by $TGF\hat{l}^2$ in cancer. FEBS Letters, 2012, 586, 1959-1970.	2.8	435
13	Actions of TGF- \hat{l}^2 as tumor suppressor and pro-metastatic factor in human cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 21-62.	7.4	350
14	Role of Smad Proteins and Transcription Factor Sp1 in p21Waf1/Cip1 Regulation by Transforming Growth Factor- \hat{l}^2 . Journal of Biological Chemistry, 2000, 275, 29244-29256.	3.4	347
15	TGF-Î ² Signaling. Biomolecules, 2020, 10, 487.	4.0	347
16	Id2 and Id3 Define the Potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor \hat{I}^2 and Bone Morphogenetic Protein. Molecular and Cellular Biology, 2004, 24, 4241-4254.	2.3	318
17	HMGA2 and Smads Co-regulate SNAIL1 Expression during Induction of Epithelial-to-Mesenchymal Transition. Journal of Biological Chemistry, 2008, 283, 33437-33446.	3.4	310
18	Role of Smads in $TGF\hat{I}^2$ signaling. Cell and Tissue Research, 2012, 347, 21-36.	2.9	291

#	Article	IF	Citations
19	TGF- \hat{l}^2 and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. International Journal of Molecular Sciences, 2018, 19, 1294.	4.1	231
20	Mechanisms of TGFβ-Induced Epithelial–Mesenchymal Transition. Journal of Clinical Medicine, 2016, 5, 63.	2.4	194
21	Transforming growth factor \hat{l}^2 as regulator of cancer stemness and metastasis. British Journal of Cancer, 2016, 115, 761-769.	6.4	189
22	c-Jun Transactivates the Promoter of the Human p21 Gene by Acting as a Superactivator of the Ubiquitous Transcription Factor Sp1. Journal of Biological Chemistry, 1999, 274, 29572-29581.	3.4	179
23	Degradation of the Tumor Suppressor Smad4 by WW and HECT Domain Ubiquitin Ligases. Journal of Biological Chemistry, 2005, 280, 22115-22123.	3.4	171
24	Regulating the stability of $TGF\hat{l}^2$ receptors and Smads. Cell Research, 2009, 19, 21-35.	12.0	170
25	Transforming Growth Factor- \hat{l}^2 Induces Nuclear Import of Smad3 in an Importin- \hat{l}^2 1 and Ran-dependent Manner. Molecular Biology of the Cell, 2001, 12, 1079-1091.	2.1	163
26	LIM-kinase 2 and Cofilin Phosphorylation Mediate Actin Cytoskeleton Reorganization Induced by Transforming Growth Factor-l ² . Journal of Biological Chemistry, 2005, 280, 11448-11457.	3.4	162
27	Nuclear Factor YY1 Inhibits Transforming Growth Factor \hat{l}^2 - and Bone Morphogenetic Protein-Induced Cell Differentiation. Molecular and Cellular Biology, 2003, 23, 4494-4510.	2.3	153
28	Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biology, 2015, 43, 42-60.	3.6	140
29	Emergence, development and diversification of the TGF- \hat{l}^2 signalling pathway within the animal kingdom. BMC Evolutionary Biology, 2009, 9, 28.	3.2	137
30	Notch signaling is necessary for epithelial growth arrest by TGF-β. Journal of Cell Biology, 2007, 176, 695-707.	5.2	126
31	Induction of epithelial–mesenchymal transition by transforming growth factor β. Seminars in Cancer Biology, 2012, 22, 446-454.	9.6	123
32	PARP-1 Attenuates Smad-Mediated Transcription. Molecular Cell, 2010, 40, 521-532.	9.7	119
33	Hyaluronan Fragments Induce Endothelial Cell Differentiation in a CD44- and CXCL1/GRO1-dependent Manner. Journal of Biological Chemistry, 2005, 280, 24195-24204.	3.4	118
34	Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor \hat{l}^2 . International Journal of Molecular Sciences, 2018, 19, 3672.	4.1	117
35	Functions of Transforming Growth Factor- \hat{l}^2 Family Type I Receptors and Smad Proteins in the Hypertrophic Maturation and Osteoblastic Differentiation of Chondrocytes. Journal of Biological Chemistry, 2002, 277, 33545-33558.	3.4	116
36	$TGF\hat{I}^2$ and matrix-regulated epithelial to mesenchymal transition. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2621-2634.	2.4	116

#	Article	IF	Citations
37	The Soluble Exoplasmic Domain of the Type II Transforming Growth Factor (TGF)- \hat{l}^2 Receptor. Journal of Biological Chemistry, 1995, 270, 2747-2754.	3.4	108
38	Smad pathwayâ€specific transcriptional regulation of the cell cycle inhibitor p21 ^{WAF1/Cip1} . Journal of Cellular Physiology, 2005, 204, 260-272.	4.1	102
39	Regulation of Transcription Factor Twist Expression by the DNA Architectural Protein High Mobility Group A2 during Epithelial-to-Mesenchymal Transition. Journal of Biological Chemistry, 2012, 287, 7134-7145.	3.4	94
40	Dynamic control of TGFâ€Î² signaling and its links to the cytoskeleton. FEBS Letters, 2008, 582, 2051-2065.	2.8	92
41	Differential Ubiquitination Defines the Functional Status of the Tumor Suppressor Smad4. Journal of Biological Chemistry, 2003, 278, 33571-33582.	3.4	91
42	TGF-β Family Signaling in Epithelial Differentiation and Epithelial–Mesenchymal Transition. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022194.	5.5	90
43	Control of transforming growth factor \hat{l}^2 signal transduction by small GTPases. FEBS Journal, 2009, 276, 2947-2965.	4.7	88
44	Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene, 2000, 19, 4396-4404.	5.9	86
45	Reprogramming during epithelial to mesenchymal transition under the control of TGF \hat{l}^2 . Cell Adhesion and Migration, 2015, 9, 233-246.	2.7	82
46	The Mechanism of Nuclear Export of Smad3 Involves Exportin 4 and Ran. Molecular and Cellular Biology, 2006, 26, 1318-1332.	2.3	78
47	Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine and Growth Factor Reviews, 2016, 27, 81-92.	7.2	78
48	From mono- to oligo-Smads: The heart of the matter in TGF-beta signal transduction. Genes and Development, 2002, 16, 1867-1871.	5.9	73
49	TGFÎ 2 induces SIK to negatively regulate type I receptor kinase signaling. Journal of Cell Biology, 2008, 182, 655-662.	5.2	69
50	The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition. Nucleic Acids Research, 2015, 43, 162-178.	14.5	69
51	Tamoxifen Inhibits TGFâ€Î²â€Mediated Activation of Myofibroblasts by Blocking Nonâ€Smad Signaling Through ERK1/2. Journal of Cellular Physiology, 2015, 230, 3084-3092.	4.1	69
52	The rationale for targeting <scp>TGF</scp> â€Î² in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	3.4	60
53	The Notch and TGF- \hat{l}^2 Signaling Pathways Contribute to the Aggressiveness of Clear Cell Renal Cell Carcinoma. PLoS ONE, 2011, 6, e23057.	2.5	56
54	Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1. Molecular Cell, 2017, 68, 847-859.e7.	9.7	53

#	Article	IF	Citations
55	Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biology, 2018, 74, 35-51.	3.6	53
56	Dual inhibition of TGFâ€Î² and PDâ€L1: a novel approach to cancer treatment. Molecular Oncology, 2022, 16, 2117-2134.	4.6	53
57	$TGF\hat{l}^2$ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 2020, 39, 4436-4449.	5.9	52
58	Negative Regulation of $TGF\hat{l}^2$ Signaling by the Kinase LKB1 and the Scaffolding Protein LIP1. Journal of Biological Chemistry, 2011, 286, 341-353.	3.4	50
59	Mechanism of a Transcriptional Cross Talk between Transforming Growth Factor-β–regulated Smad3 and Smad4 Proteins and Orphan Nuclear Receptor Hepatocyte Nuclear Factor-4. Molecular Biology of the Cell, 2003, 14, 1279-1294.	2.1	49
60	Epithelial–mesenchymal transition in cancer. Molecular Oncology, 2017, 11, 715-717.	4.6	47
61	Snail regulates BMP and TGF \hat{l}^2 pathways to control the differentiation status of glioma-initiating cells. Oncogene, 2018, 37, 2515-2531.	5.9	46
62	Has 2 natural antisense RNA and Hmga 2 promote Has 2 expression during TGF \hat{I}^2 -induced EMT in breast cancer. Matrix Biology, 2019, 80, 29-45.	3.6	43
63	Long nonâ€coding RNAs and TGFâ€Î² signaling in cancer. Cancer Science, 2020, 111, 2672-2681.	3.9	38
64	Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling. BMC Cell Biology, 2004, 5, 2.	3.0	37
65	Regulation of Myosin Light Chain Function by BMP Signaling Controls Actin Cytoskeleton Remodeling. Cellular Physiology and Biochemistry, 2011, 28, 1031-1044.	1.6	37
66	p53 regulates epithelial–mesenchymal transition induced by transforming growth factor β. Journal of Cellular Physiology, 2013, 228, 801-813.	4.1	37
67	TGF- \hat{l}^2 signaling from a three-dimensional perspective: insight into selection of partners. Trends in Cell Biology, 2002, 12, 304-307.	7.9	36
68	Functional role of Meox2 during the epithelial cytostatic response to TGF- \hat{l}^2 . Molecular Oncology, 2007, 1, 55-71.	4.6	35
69	Snail mediates crosstalk between TGF \hat{l}^2 and LXR $\hat{l}\pm$ in hepatocellular carcinoma. Cell Death and Differentiation, 2018, 25, 885-903.	11.2	34
70	In vitro and ex vivo vanadium antitumor activity in (TGF- \hat{l}^2)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients. International Journal of Biochemistry and Cell Biology, 2016, 74, 121-134.	2.8	33
71	Ras and TGF- \hat{l}^2 signaling enhance cancer progression by promoting the \hat{l} Np63 transcriptional program. Science Signaling, 2016, 9, ra84.	3.6	33
72	LXRÎ \pm limits TGFÎ 2 -dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis, 2019, 8, 36.	4.9	33

#	Article	IF	CITATIONS
73	Transforming growth factor \hat{l}^2 and bone morphogenetic protein actions in brain tumors. FEBS Letters, 2015, 589, 1588-1597.	2.8	32
74	Genome–wide binding of transcription factor ZEB1 in tripleâ€negative breast cancer cells. Journal of Cellular Physiology, 2018, 233, 7113-7127.	4.1	32
75	Transforming Growth Factor \hat{l}^2 Promotes Complexes between Smad Proteins and the CCCTC-binding Factor on the H19 Imprinting Control Region Chromatin. Journal of Biological Chemistry, 2010, 285, 19727-19737.	3.4	30
76	Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer. Cancer Research, 2017, 77, 1730-1740.	0.9	29
77	Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases. Scientific Reports, 2018, 8, 5531.	3.3	29
78	Transcriptional Induction of Salt-inducible Kinase 1 by Transforming Growth Factor \hat{I}^2 Leads to Negative Regulation of Type I Receptor Signaling in Cooperation with the Smurf2 Ubiquitin Ligase. Journal of Biological Chemistry, 2012, 287, 12867-12878.	3.4	27
79	$TGF \hat{I}^2$ Activates Mitogen- and Stress-activated Protein Kinase-1 (MSK1) to Attenuate Cell Death*. Journal of Biological Chemistry, 2011, 286, 5003-5011.	3.4	26
80	The TGFB2-AS1 IncRNA Regulates TGF-Î ² Signaling by Modulating Corepressor Activity. Cell Reports, 2019, 28, 3182-3198.e11.	6.4	26
81	Analysis of Epithelial–Mesenchymal Transition Induced by Transforming Growth Factor β. Methods in Molecular Biology, 2016, 1344, 147-181.	0.9	23
82	TANKâ€binding kinase 1 is a mediator of plateletâ€induced EMT in mammary carcinoma cells. FASEB Journal, 2019, 33, 7822-7832.	0.5	23
83	Context-dependent Action of Transforming Growth Factor \hat{l}^2 Family Members on Normal and Cancer Stem Cells. Current Pharmaceutical Design, 2012, 18, 4072-4086.	1.9	22
84	Genomewide binding of transcription factor Snail1 in tripleâ€negative breast cancer cells. Molecular Oncology, 2018, 12, 1153-1174.	4.6	22
85	BMP signaling is a therapeutic target in ovarian cancer. Cell Death Discovery, 2020, 6, 139.	4.7	22
86	TGF-Î ² Targets PAX3 to Control Melanocyte Differentiation. Developmental Cell, 2008, 15, 797-799.	7.0	21
87	TGF- \hat{l}^2 Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2018, 10, a031997.	5 . 5	21
88	TGFÎ ² -induced Early Activation of the Small GTPase RhoA is Smad2/3-independent and Involves Src and the Guanine Nucleotide Exchange Factor Vav2. Cellular Physiology and Biochemistry, 2011, 28, 229-238.	1.6	20
89	Transforming growth factor \hat{I}^2 (TGF \hat{I}^2) induces NUAK kinase expression to fine-tune its signaling output. Journal of Biological Chemistry, 2019, 294, 4119-4136.	3.4	20
90	Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor \hat{I}^2 Signaling. PLoS ONE, 2014, 9, e103651.	2.5	19

#	Article	IF	CITATIONS
91	Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. International Journal of Molecular Sciences, 2020, 21, 7371.	4.1	19
92	The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor \hat{l}^2 signaling. Oncogene, 2021, 40, 3748-3765.	5.9	18
93	A New Twist in Smad Signaling. Developmental Cell, 2006, 10, 685-686.	7.0	17
94	The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling. Oncotarget, 2016, 7, 1120-1143.	1.8	17
95	BMP Signaling in Osteogenesis, Bone Remodeling and Repair. European Journal of Trauma and Emergency Surgery, 2005, 31, 464-479.	0.3	16
96	Extracellular Vesicles and Transforming Growth Factor \hat{l}^2 Signaling in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 849938.	3.7	14
97	Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Frontiers in Pharmacology, 2021, 12, 723798.	3.5	13
98	Coordination of TGF-Î ² Signaling by Ubiquitylation. Molecular Cell, 2013, 51, 555-556.	9.7	11
99	JNK-Dependent cJun Phosphorylation Mitigates $TGF\hat{l}^2$ - and EGF -Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses. Cells, 2019, 8, 1481.	4.1	11
100	BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells. Cellular Signalling, 2021, 87, 110146.	3.6	11
101	The protein kinase SIK downregulates the polarity protein Par3. Oncotarget, 2018, 9, 5716-5735.	1.8	11
102	Single Chain Antibodies as Tools to Study transforming growth factor \hat{l}^2 -Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens. Molecular and Cellular Proteomics, 2016, 15, 1848-1856.	3.8	10
103	Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential. Matrix Biology Plus, 2020, 6-7, 100033.	3.5	10
104	Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation. Scientific Reports, 2016, 6, 29868.	3.3	9
105	NUAK1 and NUAK2 Fine-Tune TGF-Î ² Signaling. Cancers, 2021, 13, 3377.	3.7	9
106	The nuts and bolts of IRF structure. Nature Structural and Molecular Biology, 2003, 10, 874-876.	8.2	8
107	The mitotic checkpoint protein kinase BUB1 is an engine in the TGF- \hat{l}^2 signaling apparatus. Science Signaling, 2015, 8, fs1.	3.6	8
108	Commercially Available Preparations of Recombinant Wnt3a Contain Nonâ€Wnt Related Activities Which May Activate TGFâ€Î² Signaling. Journal of Cellular Biochemistry, 2016, 117, 938-945.	2.6	8

#	Article	IF	Citations
109	The protein kinase LKB1 promotes selfâ€renewal and blocks invasiveness in glioblastoma. Journal of Cellular Physiology, 2022, 237, 743-762.	4.1	8
110	Nucleosome regulatory dynamics in response to TGFÂ. Nucleic Acids Research, 2014, 42, 6921-6934.	14.5	6
111	Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. Journal of Biological Chemistry, 2016, 291, 12706-12723.	3.4	6
112	Upregulated BMP-Smad signaling activity in the glucuronyl C5-epimerase knock out MEF cells. Cellular Signalling, 2019, 54, 122-129.	3.6	5
113	The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma. Cell Death and Disease, 2021, 12, 932.	6.3	5
114	TGFβ selects for proâ€stemness over proâ€invasive phenotypes during cancer cell epithelial–mesenchymal transition. Molecular Oncology, 2022, 16, 2330-2354.	4.6	5
115	Role of TGF-β signaling in EMT, cancer progression and metastasis. Drug Discovery Today: Disease Models, 2011, 8, 121-126.	1.2	3
116	Invasive cells follow Snail's slow and persistent pace. Cell Cycle, 2014, 13, 2320-2321.	2.6	3
117	Receptor Serine/Threonine Kinases. , 2005, , 1603-1608.		1
118	Integrins open the way to epithelial-mesenchymal transitions. Cell Cycle, 2010, 9, 1678-1683.	2.6	1
119	Epithelial–Mesenchymal Transition as a Mechanism of Metastasis. , 2009, , 65-92.		0
120	Cancer-Associated Fibroblasts and the Role of TGF-Î ² ., 2008, , 417-441.		0