
Marek Basler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/197919/publications.pdf Version: 2024-02-01

MADER RASIED

#	Article	IF	CITATIONS
1	Subcellular localization of Type VI secretion system assembly in response to cell–cell contact. EMBO Journal, 2022, 41, .	7.8	14
2	Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to <i>Francisella</i> Virulence in Galleria mellonella Larvae. Infection and Immunity, 2021, 89, e0057920.	2.2	10
3	The evolution of tit-for-tat in bacteria via the type VI secretion system. Nature Communications, 2020, 11, 5395.	12.8	32
4	Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24484-24493.	7.1	21
5	The evolution of the type VI secretion system as a disintegration weapon. PLoS Biology, 2020, 18, e3000720.	5.6	65
6	DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi. Cell Reports, 2019, 29, 1633-1644.e4.	6.4	17
7	Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems. Annual Review of Microbiology, 2019, 73, 621-638.	7.3	93
8	Abundance of bacterial Type VI secretion system components measured by targeted proteomics. Nature Communications, 2019, 10, 2584.	12.8	35
9	Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection. BMC Infectious Diseases, 2019, 19, 237.	2.9	18
10	Diverse roles of TssAâ€like proteins in the assembly of bacterial type VI secretion systems. EMBO Journal, 2019, 38, e100825.	7.8	38
11	Cryo― <scp>EM</scp> reconstruction of Type <scp>VI</scp> secretion system baseplate and sheath distal end. EMBO Journal, 2018, 37, .	7.8	74
12	Bacterial infection and symbiosis. Molecular Biology of the Cell, 2018, 29, 683-684.	2.1	1
13	Type VI secretion system sheath interâ€subunit interactions modulate its contraction. EMBO Reports, 2018, 19, 225-233.	4.5	33
14	Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida. Frontiers in Cellular and Infection Microbiology, 2018, 8, 284.	3.9	4
15	Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nature Communications, 2017, 8, 15853.	12.8	75
16	Using Force to Punch Holes: Mechanics of Contractile Nanomachines. Trends in Cell Biology, 2017, 27, 623-632.	7.9	76
17	Cryo-EM structure of the extended type VI secretion system sheath–tube complex. Nature Microbiology, 2017, 2, 1507-1512.	13.3	107
18	The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nature Communications, 2017, 8, 16088.	12.8	49

MAREK BASLER

#	Article	IF	CITATIONS
19	The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Reports, 2017, 21, 3927-3940.	6.4	121
20	Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells. Cell, 2016, 167, 99-110.e12.	28.9	132
21	Shedding light on biology of bacterial cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150499.	4.0	28
22	The Microbial Olympics 2016. Nature Microbiology, 2016, 1, 16122.	13.3	7
23	Established Microbial Colonies Can Survive Type VI Secretion Assault. PLoS Computational Biology, 2015, 11, e1004520.	3.2	64
24	Structure of the Type VI Secretion System Contractile Sheath. Cell, 2015, 160, 952-962.	28.9	216
25	De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nature Methods, 2015, 12, 335-338.	19.0	172
26	Type VI secretion system: secretion by a contractile nanomachine. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150021.	4.0	169
27	PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 2013, 500, 350-353.	27.8	466
28	Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell, 2013, 152, 884-894.	28.9	486
29	Type 6 Secretion System–Mediated Immunity to Type 4 Secretion System–Mediated Gene Transfer. Science, 2013, 342, 250-253.	12.6	120
30	Calcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores. PLoS Pathogens, 2012, 8, e1002580.	4.7	40
31	Transcriptomic Identification of Iron-Regulated and Iron-Independent Gene Copies within the Heavily Duplicated Trichomonas vaginalis Genome. Genome Biology and Evolution, 2012, 4, 1017-1029.	2.5	54
32	Type 6 Secretion Dynamics Within and Between Bacterial Cells. Science, 2012, 337, 815-815.	12.6	215
33	Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483, 182-186.	27.8	579
34	Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient. Frontiers in Microbiology, 2011, 2, 162.	3.5	29
35	RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiology Reviews, 2010, 34, 1076-1112.	8.6	420
36	Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Molecular Microbiology, 2010, 75, 1550-1562.	2.5	44

MAREK BASLER

#	Article	IF	CITATIONS
37	Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4154-4159.	7.1	576
38	Oligomerization is involved in pore formation by <i>Bordetella</i> adenylate cyclase toxin. FASEB Journal, 2009, 23, 2831-2843.	0.5	51
39	Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics, 2008, 9, 217.	2.8	66
40	Segments Crucial for Membrane Translocation and Pore-forming Activity of Bordetella Adenylate Cyclase Toxin. Journal of Biological Chemistry, 2007, 282, 12419-12429.	3.4	63
41	Third Activity of Bordetella Adenylate Cyclase (AC) Toxin-Hemolysin. Journal of Biological Chemistry, 2007, 282, 2808-2820.	3.4	62
42	Eukaryotic-Type Serine/Threonine Protein Kinase StkP Is a Global Regulator of Gene Expression in <i>Streptococcus pneumoniae</i> . Journal of Bacteriology, 2007, 189, 4168-4179.	2.2	94
43	Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae. Current Genetics, 2007, 52, 87-95.	1.7	5
44	The iron-regulated transcriptome and proteome ofNeisseria meningitidis serogroupâ€C. Proteomics, 2006, 6, 6194-6206.	2.2	27
45	Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells. FEMS Microbiology Letters, 2006, 263, 109-118.	1.8	24
46	Pore-Forming and Enzymatic Activities of Bordetella pertussis Adenylate Cyclase Toxin Synergize in Promoting Lysis of Monocytes. Infection and Immunity, 2006, 74, 2207-2214.	2.2	72
47	Acylation of Lysine 860 Allows Tight Binding and Cytotoxicity of Bordetella Adenylate Cyclase on CD11b-Expressing Cells. Biochemistry, 2005, 44, 12759-12766.	2.5	68