
Andreas M Beyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1978511/publications.pdf Version: 2024-02-01

ANDDEAS M REVED

#	Article	IF	CITATIONS
1	Prolonged endothelial-dysfunction in human arterioles following infection with SARS-CoV-2. Cardiovascular Research, 2022, 118, 18-19.	3.8	9
2	Endothelial dysfunction as a complication of anti-cancer therapy. , 2022, 237, 108116.		14
3	Greenspace, Inflammation, Cardiovascular Health, and Cancer: A Review and Conceptual Framework for Greenspace in Cardio-Oncology Research. International Journal of Environmental Research and Public Health, 2022, 19, 2426.	2.6	16
4	Chemotherapy, Microvascular Function, and Angiogenesis ―a Longitudinal Study. FASEB Journal, 2022, 36, .	0.5	0
5	Examining the role of Drp1 in ageâ€related microvascular dysfunction. FASEB Journal, 2022, 36, .	0.5	О
6	Circulating Factors Provoke Endothelial Dysfunction in the Human Microcirculation Following Doxorubicin Chemotherapy. FASEB Journal, 2022, 36, .	0.5	0
7	Mitochondrial Telomerase Prevents Chemotherapyâ€Induced Cardiovascular Toxicity. FASEB Journal, 2022, 36, .	0.5	Ο
8	Stratification by Race Reveals Disparate Vascular Toxicity in Response to Anti ancer Therapies. FASEB Journal, 2022, 36, .	0.5	0
9	Take charge during treatment: A planned exercise protocol to evaluate disparities and cardiovascular outcomes in Black and White patients with breast cancer undergoing treatment Journal of Clinical Oncology, 2022, 40, TPS12138-TPS12138.	1.6	Ο
10	Critical Interaction Between Telomerase and Autophagy in Mediating Flow-Induced Human Arteriolar Vasodilation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 446-457.	2.4	14
11	Sweat the small stuff: The human microvasculature and heart disease. Microcirculation, 2021, 28, e12658.	1.8	4
12	Hypertension preserves the magnitude of microvascular flowâ€mediated dilation following transient elevation in intraluminal pressure. Physiological Reports, 2021, 9, e14507.	1.7	2
13	Preclinical Models of Cancer Therapy–Associated Cardiovascular Toxicity: A Scientific Statement From the American Heart Association. Circulation Research, 2021, 129, e21-e34.	4.5	37
14	Pulling back the curtain on anthracycline cardiotoxicity: the hidden role of the microcirculation. Cardiovascular Research, 2021, , .	3.8	1
15	Vascular effects of disrupting endothelial mTORC1 signaling in obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R228-R237.	1.8	2
16	Dietary Sodium Restriction Results in Tissue-Specific Changes in DNA Methylation in Humans. Hypertension, 2021, 78, 434-446.	2.7	9
17	Autophagy, TERT, and mitochondrial dysfunction in hyperoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H985-H1003.	3.2	11
18	Modulation of p66Shc impairs cerebrovascular myogenic tone in low renin but not low nitric oxide models of systemic hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1096-H1102.	3.2	5

ANDREAS M BEYER

#	Article	IF	CITATIONS
19	Targeting muscle-enriched long non-coding RNA <i>H19</i> reverses pathological cardiac hypertrophy. European Heart Journal, 2020, 41, 3462-3474.	2.2	81
20	BCRâ€ABL tyrosine kinase inhibitors promote pathological changes in dilator phenotype in the human microvasculature. Microcirculation, 2020, 27, e12625.	1.8	6
21	Vascular autophagy in health and disease. Basic Research in Cardiology, 2020, 115, 41.	5.9	58
22	Effects of Antiâ€Cancer Therapy on Human Microvascular Function ―a Longitudinal Study. FASEB Journal, 2020, 34, 1-1.	0.5	0
23	Detrimental effects of chemotherapy on human coronary microvascular function. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H705-H710.	3.2	31
24	Cancer therapy-induced cardiovascular toxicity: old/new problems and old drugs. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H164-H167.	3.2	17
25	Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Disease. Scientific Reports, 2019, 9, 7623.	3.3	59
26	Telomerase Deficiency Predisposes to Heart Failure and Ischemia-Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2019, 6, 31.	2.4	26
27	Visualization and quantification of mitochondrial structure in the endothelium of intact arteries. Cardiovascular Research, 2019, 115, 1546-1556.	3.8	21
28	Vascular autophagy in physiology and pathology. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H183-H185.	3.2	5
29	Integrative Effects of Autophagy and Telomerase on Arteriolar Flowâ€Mediated Dilation in Health and Coronary Artery Disease. FASEB Journal, 2019, 33, 684.2.	0.5	0
30	Adverse Effects of Chemotherapy on Human Microvascular Function. FASEB Journal, 2019, 33, lb453.	0.5	2
31	Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 622-635.	2.4	46
32	Detection of hydrogen peroxide production in the isolated rat lung using Amplex red. Free Radical Research, 2018, 52, 1052-1062.	3.3	11
33	Lysophosphatidic acid acts on LPA ₁ receptor to increase H ₂ O ₂ during flowâ€induced dilation in human adipose arterioles. British Journal of Pharmacology, 2018, 175, 4266-4280.	5.4	11
34	Telomerase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1247-1249.	2.4	2
35	Chemotherapeutic-Induced Cardiovascular Dysfunction: Physiological Effects, Early Detection—The Role of Telomerase to Counteract Mitochondrial Defects and Oxidative Stress. International Journal of Molecular Sciences, 2018, 19, 797.	4.1	14
36	Telomerase reverse transcriptase protects against angiotensin II-induced microvascular endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1053-H1060.	3.2	37

ANDREAS M BEYER

#	Article	IF	CITATIONS
37	Neoadjuvant Chemotherapy Decreases Angiogenesis Potential and Microvascular Function in Human Breast Cancer Patients. FASEB Journal, 2018, 32, 845.6.	0.5	0
38	LPAâ€induced activation of LPA 1 receptor leads to the loss of NOâ€mediated flowâ€induced dilation in human microvessels. FASEB Journal, 2018, 32, 713.15.	0.5	0
39	Dysbacteriosis an Inciting Cause of Endothelial Dysfunction mediated through Mitochondrial DNA Interactions. FASEB Journal, 2018, 32, 582.3.	0.5	0
40	5,6-δ-DHTL, a stable metabolite of arachidonic acid, is a potential EDHF that mediates microvascular dilation. Free Radical Biology and Medicine, 2017, 103, 87-94.	2.9	14
41	PGC-1α (Peroxisome Proliferator–Activated Receptor γ Coactivator 1-α) Overexpression in Coronary Artery Disease Recruits NO and Hydrogen Peroxide During Flow-Mediated Dilation and Protects Against Increased Intraluminal Pressure. Hypertension, 2017, 70, 166-173.	2.7	41
42	Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Research in Cardiology, 2017, 112, 5.	5.9	64
43	Vascular Actions of Angiotensin 1–7 in the Human Microcirculation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1254-1262.	2.4	55
44	Friend or foe? Telomerase as a pharmacological target in cancer and cardiovascular disease. Pharmacological Research, 2016, 111, 422-433.	7.1	31
45	Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species. Basic Research in Cardiology, 2016, 111, 26.	5.9	39
46	Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation. Circulation Research, 2016, 118, 856-866.	4.5	88
47	The Human Microcirculation. Circulation Research, 2016, 118, 157-172.	4.5	222
48	Regulation of Insulin Receptor Trafficking by Bardet Biedl Syndrome Proteins. PLoS Genetics, 2015, 11, e1005311.	3.5	57
49	Response to "Does Angiotensin-Dependent Superoxide Production Help to Prevent Salt-Induced Endothelial Dysfunction in 2 Kidney–1 Clip Hypertensive Rats?― American Journal of Hypertension, 2014, 27, 640-640.	2.0	0
50	An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1587-H1593.	3.2	54
51	Ceramide Changes the Mediator of Flow-Induced Vasodilation From Nitric Oxide to Hydrogen Peroxide in the Human Microcirculation. Circulation Research, 2014, 115, 525-532.	4.5	105
52	Amelioration of salt-induced vascular dysfunction in mesenteric arteries of Dahl salt-sensitive rats by missense mutation of extracellular superoxide dismutase. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H339-H347.	3.2	12
53	In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. Journal of Muscle Research and Cell Motility, 2013, 34, 199-210.	2.0	40
54	AT1 Receptors Prevent Salt-Induced Vascular Dysfunction in Isolated Middle Cerebral Arteries of 2 Kidney-1 Clip Hypertensive Rats. American Journal of Hypertension, 2013, 26, 1398-1404.	2.0	10

ANDREAS M BEYER

#	Article	IF	CITATIONS
55	Prolonged treatment with angiotensin 1–7 improves endothelial function in diet-induced obesity. Journal of Hypertension, 2013, 31, 730-738.	0.5	35
56	Decreased Telomerase Activity Sensitizes the Resistance Vasculature to Stressâ€Induced Endothelial Dysfunction. FASEB Journal, 2013, 27, 678.1.	0.5	0
57	Inhibition of Neutral Sphingomyelinase Prevents High Pressureâ€Induced Shift in the Mediator of Endotheliumâ€Dependent Dilation from NO to H2O2. FASEB Journal, 2013, 27, 901.1.	0.5	Ο
58	Dahl Salt-Sensitive Rats Are Protected Against Vascular Defects Related to Diet-Induced Obesity. Hypertension, 2012, 60, 404-410.	2.7	26
59	Regulation of the human coronary microcirculation. Journal of Molecular and Cellular Cardiology, 2012, 52, 814-821.	1.9	49
60	Hexosamine pathway activation and O-linked-N-acetylglucosamine — Novel mediators of endothelial dysfunction in hyperglycemia and diabetes. Vascular Pharmacology, 2012, 56, 113-114.	2.1	9
61	Decreased Telomerase Activity Converts the Mechanism of FMD from NO to H 2 O 2 in Human and Mouse Arterioles. FASEB Journal, 2012, 26, 676.1.	0.5	0
62	Inactivation of Bardet-Biedl syndrome genes causes kidney defects. American Journal of Physiology - Renal Physiology, 2011, 300, F574-F580.	2.7	26
63	Bioinformatic Analysis of Gene Sets Regulated by Ligand-Activated and Dominant-Negative Peroxisome Proliferator–Activated Receptor γ in Mouse Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 518-525.	2.4	26
64	Contrasting vascular effects caused by loss of Bardet-Biedl syndrome genes. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1902-H1907.	3.2	14
65	Interference with PPARÎ ³ Function in Smooth Muscle Causes Vascular Dysfunction and Hypertension. Cell Metabolism, 2008, 7, 215-226.	16.2	153
66	Endothelium-Specific Interference With Peroxisome Proliferator Activated Receptor Gamma Causes Cerebral Vascular Dysfunction in Response to a High-Fat Diet. Circulation Research, 2008, 103, 654-661.	4.5	89
67	Interference With PPARÎ ³ Signaling Causes Cerebral Vascular Dysfunction, Hypertrophy, and Remodeling. Hypertension, 2008, 51, 867-871.	2.7	104
68	Germ line activation of the Tie2 and SMMHC promoters causes noncell-specific deletion of floxed alleles. Physiological Genomics, 2008, 35, 1-4.	2.3	59
69	Vascular hypercontractility to endothelin 1 in mice lacking endothelial PPARG. FASEB Journal, 2008, 22, 968.12.	0.5	0
70	Gene expression profiling of potential PPARÎ ³ target genes in mouse aorta. Physiological Genomics, 2004, 18, 33-42.	2.3	47