## John Cunningham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1976387/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Posterior Predictive Null. Bayesian Analysis, 2023, 18, .                                                                                                                         | 3.0  | 2         |
| 2  | Interrogating theoretical models of neural computation with emergent property inference. ELife, 2021, 10, .                                                                           | 6.0  | 16        |
| 3  | Predicting post-operative right ventricular failure using video-based deep learning. Nature<br>Communications, 2021, 12, 5192.                                                        | 12.8 | 32        |
| 4  | Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.<br>PLoS Computational Biology, 2021, 17, e1009439.                               | 3.2  | 21        |
| 5  | Learning sparse log-ratios for high-throughput sequencing data. Bioinformatics, 2021, 38, 157-163.                                                                                    | 4.1  | 16        |
| 6  | Designing clinically translatable artificial intelligence systems for high-dimensional medical imaging.<br>Nature Machine Intelligence, 2021, 3, 929-935.                             | 16.0 | 29        |
| 7  | Value and choice as separable and stable representations in orbitofrontal cortex. Nature<br>Communications, 2020, 11, 3466.                                                           | 12.8 | 17        |
| 8  | Neural Trajectories in the Supplementary Motor Area and Motor Cortex Exhibit Distinct Geometries,<br>Compatible with Different Classes of Computation. Neuron, 2020, 107, 745-758.e6. | 8.1  | 90        |
| 9  | Localized semi-nonnegative matrix factorization (LocaNMF) of widefield calcium imaging data. , 2020, 16, e1007791.                                                                    |      | 0         |
| 10 | Localized semi-nonnegative matrix factorization (LocaNMF) of widefield calcium imaging data. , 2020, 16, e1007791.                                                                    |      | 0         |
| 11 | Localized semi-nonnegative matrix factorization (LocaNMF) of widefield calcium imaging data. , 2020, 16, e1007791.                                                                    |      | 0         |
| 12 | Localized semi-nonnegative matrix factorization (LocaNMF) of widefield calcium imaging data. , 2020, 16, e1007791.                                                                    |      | 0         |
| 13 | Towards the neural population doctrine. Current Opinion in Neurobiology, 2019, 55, 103-111.                                                                                           | 4.2  | 186       |
| 14 | Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response. Neuron, 2018, 97,<br>953-966.e8.                                                                        | 8.1  | 216       |
| 15 | Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience.<br>Current Opinion in Neurobiology, 2018, 50, 232-241.                            | 4.2  | 68        |
| 16 | Different population dynamics in the supplementary motor area and motor cortex during reaching.<br>Nature Communications, 2018, 9, 2754.                                              | 12.8 | 77        |
| 17 | Conservation of preparatory neural events in monkey motor cortex regardless of how movement is initiated. ELife, 2018, 7, .                                                           | 6.0  | 80        |
| 18 | Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex. Neuron, 2017, 95, 683-696.e11.                                                                  | 8.1  | 123       |

JOHN CUNNINGHAM

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structure in neural population recordings: an expected byproduct of simpler phenomena?. Nature<br>Neuroscience, 2017, 20, 1310-1318.                                       | 14.8 | 134       |
| 20 | Sparse probit linear mixed model. Machine Learning, 2017, 106, 1621-1642.                                                                                                  | 5.4  | 4         |
| 21 | Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays.<br>PLoS Computational Biology, 2017, 13, e1005842.                   | 3.2  | 44        |
| 22 | Reorganization between preparatory and movement population responses in motor cortex. Nature Communications, 2016, 7, 13239.                                               | 12.8 | 273       |
| 23 | Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1. PLoS Computational Biology, 2016, 12, e1005164. | 3.2  | 46        |
| 24 | Scaling Multidimensional Inference for Structured Gaussian Processes. IEEE Transactions on Pattern<br>Analysis and Machine Intelligence, 2015, 37, 424-436.                | 13.9 | 20        |
| 25 | Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nature Communications, 2015, 6, 7759.                                            | 12.8 | 148       |
| 26 | Encoder-Decoder Optimization for Brain-Computer Interfaces. PLoS Computational Biology, 2015, 11, e1004288.                                                                | 3.2  | 23        |
| 27 | Dimensionality reduction for large-scale neural recordings. Nature Neuroscience, 2014, 17, 1500-1509.                                                                      | 14.8 | 860       |
| 28 | Analyzing neural data at huge scale. Nature Methods, 2014, 11, 911-912.                                                                                                    | 19.0 | 4         |
| 29 | A Dynamical Basis Set for Generating Reaches. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 67-80.                                                        | 1.1  | 26        |
| 30 | A Novel Method for Curvefitting the Stretched Exponential Function to Experimental Data.<br>Biomedical Engineering Research, 2013, 2, 153-158.                             | 0.2  | 8         |
| 31 | Neural population dynamics during reaching. Nature, 2012, 487, 51-56.                                                                                                      | 27.8 | 1,195     |
| 32 | A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology, 2011, 105, 1932-1949.                | 1.8  | 141       |
| 33 | Cortical Preparatory Activity: Representation ofÂMovement or First Cog in a Dynamical Machine?.<br>Neuron, 2010, 68, 387-400.                                              | 8.1  | 406       |
| 34 | Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population<br>Activity. Journal of Neurophysiology, 2009, 102, 614-635.               | 1.8  | 461       |
| 35 | Methods for estimating neural firing rates, and their application to brain–machine interfaces. Neural Networks, 2009, 22, 1235-1246.                                       | 5.9  | 74        |
| 36 | Toward Optimal Target Placement for Neural Prosthetic Devices. Journal of Neurophysiology, 2008,<br>100, 3445-3457.                                                        | 1.8  | 24        |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Optimal Target Placement for Neural Communication Prostheses. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , . | 0.5 | 0         |
| 38 | Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. ELife, 0, 11, .                            | 6.0 | 27        |