
Johnny Di Pierdomenico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1976214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	University students fail to comply with contact lens care. Contact Lens and Anterior Eye, 2022, 45, 101411.	1.7	4
2	Assessment of dry eye symptoms among university students during the COVID-19 pandemic. Australasian journal of optometry, The, 2022, 105, 507-513.	1.3	18
3	Age and intraocular pressure in murine experimental glaucoma. Progress in Retinal and Eye Research, 2022, 88, 101021.	15.5	15
4	Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regeneration Research, 2022, 17, 1937.	3.0	5
5	Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure. International Journal of Molecular Sciences, 2022, 23, 346.	4.1	8
6	Intravitreal and subretinal syngeneic bone marrow mononuclear stem cell transplantation improves photoreceptor survival but does not ameliorate retinal function in two rat models of retinal degeneration. Acta Ophthalmologica, 2022, 100, .	1.1	7
7	Influence of the COVID-19 pandemic on contact lens wear in Spain. Contact Lens and Anterior Eye, 2021, 44, 101351.	1.7	15
8	Longitudinal In Vivo Changes in Retinal Ganglion Cell Dendritic Morphology After Acute and Chronic Optic Nerve Injury. , 2021, 62, 5.		8
9	Systemic treatment with 7,8-Dihydroxiflavone activates TtkB and affords protection of two different retinal ganglion cell populations against axotomy in adult rats. Experimental Eye Research, 2021, 210, 108694.	2.6	8
10	Short- and Long-Term Study of the Impact of Focal Blue Light-Emitting Diode-Induced Phototoxicity in Adult Albino Rats. International Journal of Molecular Sciences, 2021, 22, 9742.	4.1	5
11	Computer Vision Syndrome in the Spanish Population during the COVID-19 Lockdown. Optometry and Vision Science, 2021, 98, 1255-1262.	1.2	15
12	An in vivo model of focal light emitting diode-induced cone photoreceptor phototoxicity in adult pigmented mice: Protection with bFGF. Experimental Eye Research, 2021, 211, 108746.	2.6	6
13	Pigment Epithelium-Derived Factor (PEDF) Fragments Prevent Mouse Cone Photoreceptor Cell Loss Induced by Focal Phototoxicity In Vivo. International Journal of Molecular Sciences, 2020, 21, 7242.	4.1	13
14	Bone Marrow-Derived Mononuclear Cell Transplants Decrease Retinal Gliosis in Two Animal Models of Inherited Photoreceptor Degeneration. International Journal of Molecular Sciences, 2020, 21, 7252.	4.1	14
15	Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium. Scientific Reports, 2020, 10, 7273.	3.3	12
16	Coordinated Intervention of Microglial and Müller Cells in Light-Induced Retinal Degeneration. , 2020, 61, 47.		30
17	β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Experimental Eye Research, 2019, 188, 107781.	2.6	21
18	Retinal Ganglion Cell Death as a Late Remodeling Effect of Photoreceptor Degeneration. International Journal of Molecular Sciences, 2019, 20, 4649.	4.1	36

JOHNNY DI PIERDOMENICO

#	Article	IF	CITATIONS
19	Melanopsin+RGCs Are fully Resistant to NMDA-Induced Excitotoxicity. International Journal of Molecular Sciences, 2019, 20, 3012.	4.1	18
20	Topical Brimonidine or Intravitreal BDNF, CNTF, or bFGF Protect Cones Against Phototoxicity. Translational Vision Science and Technology, 2019, 8, 36.	2.2	30
21	Role of microglial cells in photoreceptor degeneration. Neural Regeneration Research, 2019, 14, 1186.	3.0	29
22	Taurine Depletion Causes ipRGC Loss and Increases Light-Induced Photoreceptor Degeneration. , 2018, 59, 1396.		32
23	Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. , 2018, 59, 4392.		58
24	Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Experimental Eye Research, 2018, 174, 93-97.	2.6	23
25	Retinal remodeling following photoreceptor degeneration causes retinal ganglion cell death. Neural Regeneration Research, 2018, 13, 1885.	3.0	27
26	Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities. Frontiers in Neuroanatomy, 2017, 11, 14.	1.7	51
27	Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina. Experimental Eye Research, 2017, 161, 10-16.	2.6	27
28	Different Ipsi- and Contralateral Glial Responses to Anti-VEGF and Triamcinolone Intravitreal Injections in Rats. , 2016, 57, 3533.		27
29	Inherited Photoreceptor Degeneration Causes the Death of Melanopsin-Positive Retinal Ganglion Cells and Increases Their Coexpression of Brn3a. , 2015, 56, 4592.		38