Amy C Mcadam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1974034/publications.pdf Version: 2024-02-01

Аму С Меарам

#	Article	IF	CITATIONS
1	The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	27
2	Xâ€Ray Amorphous Sulfurâ€Bearing Phases in Sedimentary Rocks of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	10
3	Oxidized and Reduced Sulfur Observed by the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover Within the Glen Torridon Region at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
4	Evolved Gas Analyses of Sedimentary Rocks From the Glen Torridon Clayâ€Bearing Unit, Gale Crater, Mars: Results From the Mars Science Laboratory Sample Analysis at Mars Instrument Suite. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	12
5	Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proceedings of the United States of America, 2022, 119, .	7.1	14
6	Fatty Acid Preservation in Modern and Relict Hot-Spring Deposits in Iceland, with Implications for Organics Detection on Mars. Astrobiology, 2021, 21, 60-82.	3.0	8
7	Formation of Tridymite and Evidence for a Hydrothermal History at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006569.	3.6	21
8	A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. Minerals (Basel, Switzerland), 2021, 11, 475.	2.0	14
9	Pyrolysis of Oxalate, Acetate, and Perchlorate Mixtures and the Implications for Organic Salts on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006803.	3.6	20
10	Brine-driven destruction of clay minerals in Gale crater, Mars. Science, 2021, 373, 198-204.	12.6	52
11	A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. Minerals (Basel, Switzerland), 2021, 11, 847.	2.0	23
12	Early diagenesis at and below Vera Rubin ridge, Gale crater, Mars. Meteoritics and Planetary Science, 2021, 56, 1905-1932.	1.6	7
13	Highâ€Temperature HCl Evolutions From Mixtures of Perchlorates and Chlorides With Waterâ€Bearing Phases: Implications for the SAM Instrument in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006173.	3.6	6
14	Accuracies and detection limits of major, minor, and trace element quantification in rocks by portable laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 171, 105946.	2.9	20
15	Constraints on the Mineralogy and Geochemistry of Vera Rubin Ridge, Gale Crater, Mars, From Mars Science Laboratory Sample Analysis at Mars Evolved Gas Analyses. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006309.	3.6	32
16	Mineralogy of Vera Rubin Ridge From the Mars Science Laboratory CheMin Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006306.	3.6	86
17	Detection of Reduced Sulfur on Vera Rubin Ridge by Quadratic Discriminant Analysis of Volatiles Observed During Evolved Gas Analysis. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006304.	3.6	25
18	Evidence for Multiple Diagenetic Episodes in Ancient Fluvial‣acustrine Sedimentary Rocks in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006295.	3.6	45

Amy C Mcadam

#	Article	IF	CITATIONS
19	Lipid Biomarkers in Ephemeral Acid Salt Lake Mudflat/Sandflat Sediments: Implications for Mars. Astrobiology, 2020, 20, 167-178.	3.0	11
20	Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy, 2020, 4, 526-532.	10.1	41
21	Benzoic Acid as the Preferred Precursor for the Chlorobenzene Detected on Mars: Insights from the Unique Cumberland Analog Investigation. Planetary Science Journal, 2020, 1, 41.	3.6	12
22	Solubility of CO2 in Sodium Silicate Melts. ACS Earth and Space Chemistry, 2020, 4, 2113-2120.	2.7	1
23	Recovery of Fatty Acids from Mineralogic Mars Analogs by TMAH Thermochemolysis for the Sample Analysis at Mars Wet Chemistry Experiment on the Curiosity Rover. Astrobiology, 2019, 19, 522-546.	3.0	33
24	Volatile Detections in Gale Crater Sediment and Sedimentary Rock. , 2019, , 369-392.		3
25	Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2019, 124, 94-113.	3.6	23
26	Visible, near-infrared, and mid-infrared spectral characterization of Hawaiian fumarolic alteration near Kilauea's December 1974 flow: Implications for spectral discrimination of alteration environments on Mars. American Mineralogist, 2018, 103, 11-25.	1.9	7
27	A novel study on the influence of cork waste residue on metakaolin-zeolite based geopolymers. Applied Clay Science, 2018, 152, 196-210.	5.2	38
28	The Incorporation of Field Portable Instrumentation Into Human Planetary Surface Exploration. Earth and Space Science, 2018, 5, 697-720.	2.6	6
29	Major Volatiles Evolved From Eolian Materials in Gale Crater. Geophysical Research Letters, 2018, 45, 10,240.	4.0	19
30	Sand Mineralogy Within the Bagnold Dunes, Gale Crater, as Observed In Situ and From Orbit. Geophysical Research Letters, 2018, 45, 9488-9497.	4.0	52
31	Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 2018, 4, eaar3330.	10.3	150
32	Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 2018, 360, 1096-1101.	12.6	369
33	Large sulfur isotope fractionations in Martian sediments at Gale crater. Nature Geoscience, 2017, 10, 658-662.	12.9	53
34	Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal of Geophysical Research E: Planets, 2017, 122, 2574-2609.	3.6	168
35	The Characterization of Biosignatures in Caves Using an Instrument Suite. Astrobiology, 2017, 17, 1203-1218.	3.0	11
36	A Twoâ€Step Kâ€Ar Experiment on Mars: Dating the Diagenetic Formation of Jarosite from Amazonian Groundwaters. Journal of Geophysical Research E: Planets, 2017, 122, 2803-2818.	3.6	72

Amy C Mcadam

#	Article	IF	CITATIONS
37	Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin Xâ€ray diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research E: Planets, 2016, 121, 75-106.	3.6	159
38	Fluids during diagenesis and sulfate vein formation in sediments at Gale crater, Mars. Meteoritics and Planetary Science, 2016, 51, 2175-2202.	1.6	50
39	Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis. Journal of Geophysical Research E: Planets, 2016, 121, 61-74.	3.6	31
40	Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2015, 120, 495-514.	3.6	375
41	The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. American Mineralogist, 2015, 100, 824-836.	1.9	122
42	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	7.1	172
43	The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science, 2015, 347, 412-414.	12.6	113
44	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
45	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
46	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
47	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
48	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	12.6	224
49	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
50	Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 373-393.	3.6	65
51	Abundances and implications of volatileâ€bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 237-254.	3.6	73
52	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
53	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
54	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327

AMY C MCADAM

#	Article	IF	CITATIONS
55	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
56	Isotopic and geochemical investigation of two distinct Mars analog environments using evolved gas techniques in Svalbard, Norway. Icarus, 2013, 224, 297-308.	2.5	9
57	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
58	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
59	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
60	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	12.6	103
61	The Sample Analysis at Mars Investigation and Instrument Suite. Space Science Reviews, 2012, 170, 401-478.	8.1	435
62	The influence of mineralogy on recovering organic acids from Mars analogue materials using the "one-pot―derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite. Planetary and Space Science, 2012, 67, 1-13.	1.7	49
63	Preferential low-pH dissolution of pyroxene in plagioclase–pyroxene mixtures: Implications for martian surface materials. Icarus, 2008, 196, 90-96.	2.5	28
64	Formation of silica by lowâ€ŧemperature acid alteration of Martian rocks: Physical hemical constraints. Journal of Geophysical Research, 2008, 113, .	3.3	41