Wafa Johal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1972968/publications.pdf

Version: 2024-02-01

840776 752698 60 789 11 20 citations h-index g-index papers 63 63 63 481 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Leveraging eye tracking to understand children's attention during game-based, tangible robotics activities. International Journal of Child-Computer Interaction, 2022, 31, 100447.	3.5	6
2	Automatic Assessment of Motor Impairments in Autism Spectrum Disorders: A Systematic Review. Cognitive Computation, 2022, 14, 624-659.	5.2	5
3	"lt Is Not the Robot Who Learns, It Is Me.―Treating Severe Dysgraphia Using Child–Robot Interaction. Frontiers in Psychiatry, 2021, 12, 596055.	2.6	22
4	The transferability of handwriting skills: from the Cyrillic to the Latin alphabet. Npj Science of Learning, 2021, 6, 6.	2.8	4
5	The Valley of non-Distraction: Effect of Robot's Human-likeness on Perception Load., 2021, , .		1
6	Robots for Learning - Learner-Centred Design. , 2021, , .		1
7	Speech-based Gesture Generation for Robots and Embodied Agents: A Scoping Review. , 2021, , .		12
8	10 Years of Human-NAO Interaction Research: A Scoping Review. Frontiers in Robotics and Al, 2021, 8, 744526.	3.2	34
9	AlloHaptic: Robot-Mediated Haptic Collaboration for Learning Linear Functions. , 2020, , .		5
10	Acquisition of handwriting in children with and without dysgraphia: A computational approach. PLoS ONE, 2020, 15, e0237575.	2.5	44
11	Iterative Design and Evaluation of a Tangible Robot-Assisted Handwriting Activity for Special Education. Frontiers in Robotics and Al, 2020, 7, 29.	3.2	21
12	A Comparison of Social Robot to Tablet and Teacher in a New Script Learning Context. Frontiers in Robotics and Al, 2020, 7, 99.	3.2	23
13	Research Trends in Social Robots for Learning. Current Robotics Reports, 2020, 1, 75-83.	7.9	51
14	Gamified Motor Training With Tangible Robots in Older Adults: A Feasibility Study and Comparison With the Young. Frontiers in Aging Neuroscience, 2020, 12, 59.	3.4	6
15	CoWriting Kazakh. , 2020, , .		17
16	Using tabletop robots to promote inclusive classroom experiences. , 2020, , .		21
17	Domestic Drones. , 2020, , .		18
18	Learning Symmetry with Tangible Robots. Advances in Intelligent Systems and Computing, 2020, , 270-283.	0.6	4

#	Article	IF	CITATIONS
19	Cognitive Learning with a Robot: TheÂCase of Script Acquisition. Lecture Notes in Computer Science, 2020, , 154-162.	1.3	0
20	Exploring the Role of Perspective Taking in Educational Child-Robot Interaction. Lecture Notes in Computer Science, 2020, , 346-351.	1.3	4
21	CoWriting Kazakh: Learning a New Script with a Robot – Video. , 2020, , .		0
22	CoWriting Kazakh., 2020,,.		0
23	LEARNING (GOOD HANDWRITING IN GREEK) BY TEACHING (A HUMANOID ROBOT). , 2020, , .		0
24	"If you've gone straight, now, you must turn left" - Exploring the use of a tangible interface in a collaborative treasure hunt for people with visual impairments. , 2020, , .		2
25	Swarm Robots in Education. , 2020, , .		5
26	Towards an Adaptive Upper Limb Rehabilitation Game with Tangible Robots., 2019, 2019, 294-299.		4
27	Reply: Limitations in the creation of an automatic diagnosis tool for dysgraphia. Npj Digital Medicine, 2019, 2, 37.	10.9	2
28	Bridging Multilevel Time Scales in HRI. ACM Transactions on Human-Robot Interaction, 2019, 8, 1-24.	4.1	0
29	Robots for Learning - R4L: Adaptive Learning. , 2019, , .		1
30	Studying the Effect of Robot Frustration on Children's Change of Perspective. , 2019, , .		3
31	Learning By Collaborative Teaching: An Engaging Multi-Party CoWriter Activity. , 2019, , .		11
32	Augmented Robotics for Learners: A Case Study on Optics. , 2019, , .		3
33	Robot Analytics: What Do Human-Robot Interaction Traces Tell Us About Learning?. , 2019, , .		9
34	CoWriting Kazakh: Transitioning to a New Latin Script using Social Robots. , 2019, , .		4
35	Designing Configurable Arm Rehabilitation Games: How Do Different Game Elements Affect User Motion Trajectories?., 2019, 2019, 5326-5330.		5
36	TIP., 2019,,.		1

#	Article	IF	Citations
37	Robots for Learning - R4L., 2018, , .		O
38	Iterative Design of an Upper Limb Rehabilitation Game with Tangible Robots. , 2018, , .		29
39	When deictic gestures in a robot can harm child-robot collaboration. , 2018, , .		50
40	Bringing letters to life. , 2018, , .		17
41	Automated human-level diagnosis of dysgraphia using a consumer tablet. Npj Digital Medicine, 2018, 1, 42.	10.9	74
42	Robots for Learning. International Journal of Social Robotics, 2018, 10, 293-294.	4.6	19
43	The near future of children's robotics. , 2018, , .		3
44	Windfield., 2017,,.		13
45	Workshop on Robots for Learning. , 2017, , .		3
46	Windfield., 2017,,.		3
47	Cellulo., 2017,,.		52
48	Keep on moving! Exploring anthropomorphic effects of motion during idle moments., 2017,,.		14
49	Haptic-Enabled Handheld Mobile Robots. , 2017, , .		17
50	Permanent magnet-assisted omnidirectional ball drive. , 2016, , .		13
51	Child-robot spatial arrangement in a learning by teaching activity. , 2016, , .		14
52	R2T2. International Journal of Advanced Robotic Systems, 2016, 13, 172988141665816.	2.1	14
53	Starting engagement detection towards a companion robot using multimodal features. Robotics and Autonomous Systems, 2016, 75, 4-16.	5.1	37
54	The Grenoble System for the Social Touch Challenge at ICMI 2015. , 2015, , .		14

#	Article	lF	CITATIONS
55	A Cognitive and Affective Architecture for Social Human-Robot Interaction. , 2015, , .		8
56	Robots Interacting with Style. , 2015, , .		2
57	Non-verbal Signals in HRI: Interference in Human Perception. Lecture Notes in Computer Science, 2015, , 275-284.	1.3	6
58	A robot with style, because you are worth it!., 2014,,.		1
59	Towards companion robots behaving with style. , 2014, , .		12
60	Acceptability of a companion robot for children in daily life situations. , 2014, , .		4