Peter W Laird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1972673/publications.pdf

Version: 2024-02-01

1099 1799 94,391 241 112 211 citations h-index g-index papers 251 251 251 91356 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications, 2013, 4, 2612.	12.8	5,788
2	Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine, 2013, 368, 2059-2074.	27.0	4,139
3	Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	27.8	4,075
4	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	28.9	3,979
5	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	14.3	3,706
6	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	27.0	2,582
7	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	28.9	2,277
8	Cancer-epigenetics comes of age. Nature Genetics, 1999, 21, 163-167.	21.4	2,125
9	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	28.9	2,111
10	Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell, 2010, 17, 510-522.	16.8	2,078
11	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 2017, 169, 1327-1341.e23.	28.9	1,794
12	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell, 2017, 171, 540-556.e25.	28.9	1,742
13	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	28.9	1,718
14	CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genetics, 2006, 38, 787-793.	21.4	1,715
15	Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 2012, 30, 413-421.	17.5	1,710
16	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	28.9	1,695
17	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	28.9	1,670
18	Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45, 1134-1140.	21.4	1,616

#	Article	IF	CITATIONS
19	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	28.9	1,485
20	Principles and challenges of genome-wide DNA methylation analysis. Nature Reviews Genetics, 2010, 11, 191-203.	16.3	1,432
21	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	16.8	1,428
22	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	28.9	1,417
23	The power and the promise of DNA methylation markers. Nature Reviews Cancer, 2003, 3, 253-266.	28.4	1,414
24	Simplified mammalian DNA isolation procedure. Nucleic Acids Research, 1991, 19, 4293-4293.	14.5	1,355
25	Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin. Cell, 2014, 158, 929-944.	28.9	1,242
26	MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Research, 2000, 28, 32e-0.	14.5	1,216
27	COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Research, 1997, 25, 2532-2534.	14.5	1,090
28	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New England Journal of Medicine, 2016, 374, 135-145.	27.0	1,040
29	Epigenetic stem cell signature in cancer. Nature Genetics, 2007, 39, 157-158.	21.4	1,023
30	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	6.4	801
31	The chromatin accessibility landscape of primary human cancers. Science, 2018, 362, .	12.6	781
32	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	16.8	750
33	Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Research, 2010, 20, 440-446.	5.5	740
34	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	28.9	738
35	Interplay between the Cancer Genome and Epigenome. Cell, 2013, 153, 38-55.	28.9	733
36	Suppression of intestinal neoplasia by DNA hypomethylation. Cell, 1995, 81, 197-205.	28.9	694

#	Article	IF	CITATIONS
37	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	6.4	683
38	The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 2014, 26, 319-330.	16.8	665
39	Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Research, 2013, 41, e90-e90.	14.5	647
40	Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Research, 2005, 33, 6823-6836.	14.5	636
41	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell, 2018, 34, 211-224.e6.	16.8	623
42	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	6.2	605
43	Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains. Nature Genetics, 2012, 44, 40-46.	21.4	588
44	Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Research, 2012, 22, 271-282.	5.5	527
45	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	6.4	523
46	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	17.5	509
47	Cooperativity between DNA Methyltransferases in the Maintenance Methylation of Repetitive Elements. Molecular and Cellular Biology, 2002, 22, 480-491.	2.3	508
48	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	16.8	478
49	Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Research, 2017, 45, gkw967.	14.5	466
50	THE ROLE OF DNA METHYLATION IN CANCER GENETICS AND EPIGENETICS. Annual Review of Genetics, 1996, 30, 441-464.	7.6	455
51	Survival and Development of Neonatal Rat Cardiomyocytes Transplanted into Adult Myocardium. Journal of Molecular and Cellular Cardiology, 2002, 34, 107-116.	1.9	455
52	A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nature Genetics, 2017, 49, 1476-1486.	21.4	427
53	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	6.4	416
54	Cancer epigenetics. Human Molecular Genetics, 2005, 14, R65-R76.	2.9	409

#	Article	IF	CITATIONS
55	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	6.4	407
56	IncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	16.8	400
57	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	16.8	396
58	DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons. PLoS ONE, 2007, 2, e895.	2.5	375
59	Precision and Performance Characteristics of Bisulfite Conversion and Real-Time PCR (MethyLight) for Quantitative DNA Methylation Analysis. Journal of Molecular Diagnostics, 2006, 8, 209-217.	2.8	361
60	Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Research, 2015, 25, 316-327.	5.5	343
61	Association Between Molecular Subtypes of Colorectal Cancer and Patient Survival. Gastroenterology, 2015, 148, 77-87.e2.	1.3	342
62	Alterations of immune response of non-small cell lung cancer with Azacytidine. Oncotarget, 2013, 4, 2067-2079.	1.8	336
63	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	6.4	333
64	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Reports, 2018, 25, 1304-1317.e5.	6.4	329
65	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-3406.	6.4	324
66	The Landscape of Microsatellite Instability in Colorectal and Endometrial Cancer Genomes. Cell, 2013, 155, 858-868.	28.9	311
67	Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 2017, 31, 411-423.	16.8	309
68	Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research, 2012, 40, 9379-9391.	14.5	305
69	Association of Breast Cancer DNA Methylation Profiles with Hormone Receptor Status and Response to Tamoxifen. Cancer Research, 2004, 64, 3807-3813.	0.9	304
70	Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Human Genetics, 2012, 131, 1565-1589.	3.8	294
71	DNA Methylation as a Biomarker for Cardiovascular Disease Risk. PLoS ONE, 2010, 5, e9692.	2.5	289
72	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	6.2	284

#	Article	IF	CITATIONS
73	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	28.9	272
74	Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nature Biotechnology, 2016, 34, 726-737.	17.5	270
75	The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell, 2018, 33, 244-258.e10.	16.8	270
76	Cigarette Smoking and Colorectal Cancer Risk by Molecularly Defined Subtypes. Journal of the National Cancer Institute, 2010, 102, 1012-1022.	6.3	261
77	DNA Methylation: An Alternative Pathway to Cancer. Annals of Surgery, 2001, 234, 10-20.	4.2	260
78	DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nature Genetics, 2018, 50, 591-602.	21.4	258
79	Widespread Epigenetic Abnormalities Suggest a Broad DNA Methylation Erasure Defect in Abnormal Human Sperm. PLoS ONE, 2007, 2, e1289.	2.5	254
80	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	6.4	245
81	Rebuilding a Damaged Heart. Circulation, 2002, 105, 1720-1726.	1.6	239
82	An Epidemiologic and Genomic Investigation Into the Obesity Paradox in Renal Cell Carcinoma. Journal of the National Cancer Institute, 2013, 105, 1862-1870.	6.3	231
83	Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Human Molecular Genetics, 2009, 18, 4808-4817.	2.9	230
84	Bis-SNP: Combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biology, 2012, 13, R61.	9.6	230
85	Epigenetic Analysis of KSHV Latent and Lytic Genomes. PLoS Pathogens, 2010, 6, e1001013.	4.7	229
86	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	28.9	228
87	DNA Hypomethylation and Ovarian Cancer Biology. Cancer Research, 2004, 64, 4472-4480.	0.9	221
88	SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Research, 2018, 46, e123.	14.5	213
89	Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncology, 2017, 3, 1654.	7.1	208
90	Molecular Characterization of MSI-H Colorectal Cancer by <i>MLHI</i> Promoter Methylation, Immunohistochemistry, and Mismatch Repair Germline Mutation Screening. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 3208-3215.	2.5	207

#	Article	IF	CITATIONS
91	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	6.4	205
92	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Reports, 2018, 23, 255-269.e4.	6.4	204
93	Inferring regulatory element landscapes and transcription factor networks from cancer methylomes. Genome Biology, 2015, 16, 105.	9.6	178
94	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	6.4	177
95	Breast Cancer DNA Methylation Profiles in Cancer Cells and Tumor Stroma: Association with HER-2/neu Status in Primary Breast Cancer. Cancer Research, 2006, 66, 29-33.	0.9	166
96	Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene, 2002, 21, 6694-6702.	5.9	165
97	DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Laboratory Investigation, 2008, 88, 161-170.	3.7	156
98	Vitamin C Promotes Widespread Yet Specific DNA Demethylation of the Epigenome in Human Embryonic Stem Cells Â. Stem Cells, 2010, 28, 1848-1855.	3.2	156
99	Comprehensive Analysis of Genetic Ancestry and Its Molecular Correlates in Cancer. Cancer Cell, 2020, 37, 639-654.e6.	16.8	151
100	Unique DNA Methylation Patterns Distinguish Noninvasive and Invasive Urothelial Cancers and Establish an Epigenetic Field Defect in Premalignant Tissue. Cancer Research, 2010, 70, 8169-8178.	0.9	148
101	Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics, 2019, 9, 2056-2070.	10.0	147
102	Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nature Communications, 2013, 4, 1628.	12.8	144
103	Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic Mice. Cancer Research, 2002, 62, 1296-9.	0.9	141
104	A Distinct DNA Methylation Shift in a Subset of Glioma CpG Island Methylator Phenotypes during Tumor Recurrence. Cell Reports, 2018, 23, 637-651.	6.4	137
105	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-Î ² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	6.2	134
106	DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Research, 2008, 36, 4689-4698.	14.5	133
107	Analysis of the Association between CIMP and BRAFV600E in Colorectal Cancer by DNA Methylation Profiling. PLoS ONE, 2009, 4, e8357.	2.5	133
108	DNA Methylation Analysis by MethyLight Technology. Methods, 2001, 25, 456-462.	3.8	121

#	Article	IF	Citations
109	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 2018, 23, 172-180.e3.	6.4	119
110	Thymidylate synthase: a novel genetic determinant of plasma homocysteine and folate levels. Human Genetics, 2002, 111, 299-302.	3.8	115
111	Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Molecular Cancer, 2008, 7, 62.	19.2	114
112	Mature mRNAs of Trypanosoma bruceipossess a $5\hat{a} \in \mathbb{R}^2$ cap acquired by discontinuous RNA synthesis. Nucleic Acids Research, 1985, 13, 4253-4266.	14.5	106
113	MethyLight. Methods in Molecular Biology, 2009, 507, 325-337.	0.9	106
114	Combination Epigenetic Therapy in Advanced Breast Cancer with 5-Azacitidine and Entinostat: A Phase II National Cancer Institute/Stand Up to Cancer Study. Clinical Cancer Research, 2017, 23, 2691-2701.	7.0	106
115	Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Molecular Cancer, 2007, 6, 70.	19.2	105
116	Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commons' Data. Cell Systems, 2019, 9, 24-34.e10.	6.2	103
117	Genome-Scale Discovery of DNA-Methylation Biomarkers for Blood-Based Detection of Colorectal Cancer. PLoS ONE, 2012, 7, e50266.	2.5	103
118	A comparison of cluster analysis methods using DNA methylation data. Bioinformatics, 2004, 20, 1896-1904.	4.1	102
119	Kaiso Contributes to DNA Methylation-Dependent Silencing of Tumor Suppressor Genes in Colon Cancer Cell Lines. Cancer Research, 2008, 68, 7258-7263.	0.9	101
120	Trans splicing in trypanosomes — archaism or adaptation?. Trends in Genetics, 1989, 5, 204-208.	6.7	100
121	Distinct methylation profiles of glioma subtypes. International Journal of Cancer, 2003, 106, 52-59.	5.1	100
122	Sensitive Detection of DNA Methylation. Annals of the New York Academy of Sciences, 2003, 983, 120-130.	3.8	100
123	DNA Methyltransferase Deficiency Modifies Cancer Susceptibility in Mice Lacking DNA Mismatch Repair. Molecular and Cellular Biology, 2002, 22, 2906-2917.	2.3	95
124	Tumor Budding in Colorectal Carcinoma. American Journal of Surgical Pathology, 2015, 39, 1340-1346.	3.7	95
125	Long-term Epigenetic Therapy with Oral Zebularine Has Minimal Side Effects and Prevents Intestinal Tumors in Mice. Cancer Prevention Research, 2008, 1, 233-240.	1.5	93
126	Smad3 Deficiency Promotes Tumorigenesis in the Distal Colon of ApcMin/+ Mice. Cancer Research, 2006, 66, 8430-8438.	0.9	86

#	Article	IF	Citations
127	Role of Methionine Adenosyltransferase 2A and S-adenosylmethionine in Mitogen-Induced Growth of Human Colon Cancer Cells. Gastroenterology, 2007, 133, 207-218.	1.3	86
128	The Mutagenic Potential of Duodenoesophageal Reflux. Annals of Surgery, 2005, 241, 63-68.	4.2	85
129	Correlation of Pathologic Features With CpG Island Methylator Phenotype (CIMP) by Quantitative DNA Methylation Analysis in Colorectal Carcinoma. American Journal of Surgical Pathology, 2006, 30, 1175-1183.	3.7	85
130	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	6.4	83
131	Transcription of the intergenic regions of the tubulin gene cluster of Trypanosoma brucei: evidence for a polyclstronic transcription unit in a eukaryote. Nucleic Acids Research, 1987, 15, 7357-7368.	14.5	81
132	Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer, 2005, 47, 193-204.	2.0	81
133	Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells. Nucleic Acids Research, 2004, 32, 5742-5749.	14.5	80
134	The Role of DNA Methylation in the Development and Progression of Lung Adenocarcinoma. Disease Markers, 2007, 23, 5-30.	1.3	80
135	The methylenetetrahydrofolate reductase C677T mutation induces cellâ€specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the siteâ€specific cancer risk modification. International Journal of Cancer, 2009, 124, 1999-2005.	5.1	80
136	DNA Methylation Profiles of Ovarian Epithelial Carcinoma Tumors and Cell Lines. PLoS ONE, 2010, 5, e9359.	2.5	80
137	Frequency of Deletions of EPCAM (TACSTD1) in MSH2-Associated Lynch Syndrome Cases. Journal of Molecular Diagnostics, 2011, 13, 93-99.	2.8	79
138	Sex differential in methylation patterns of selected genes in Singapore Chinese. Human Genetics, 2005, 117, 402-403.	3.8	78
139	Gene dysregulation by histone variant H2A.Z in bladder cancer. Epigenetics and Chromatin, 2013, 6, 34.	3.9	74
140	Association of the Colorectal CpG Island Methylator Phenotype with Molecular Features, Risk Factors, and Family History. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 512-519.	2.5	71
141	Oncogenic mechanisms mediated by DNA methylation. Trends in Molecular Medicine, 1997, 3, 223-229.	2.6	67
142	Reduced Rates of Gene Loss, Gene Silencing, and Gene Mutation in Dnmt1 -Deficient Embryonic Stem Cells. Molecular and Cellular Biology, 2001, 21, 7587-7600.	2.3	66
143	Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: a phase 2 consortium/stand Up 2 cancer study. Oncotarget, 2017, 8, 35326-35338.	1.8	66
144	Genome-Scale Screen for DNA Methylation-Based Detection Markers for Ovarian Cancer. PLoS ONE, 2011, 6, e28141.	2.5	65

#	Article	IF	Citations
145	Molecular Features of Cancers Exhibiting Exceptional Responses to Treatment. Cancer Cell, 2021, 39, 38-53.e7.	16.8	65
146	DNA methylation profile of 28 potential marker loci in malignant mesothelioma. Lung Cancer, 2007, 58, 220-230.	2.0	61
147	DNA Hypermethylation of <i>ESR1 </i> and <i> PGR </i> i> in Breast Cancer: Pathologic and Epidemiologic Associations. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 3036-3043.	2.5	60
148	Combined Bisulfite Restriction Analysis (COBRA)., 2002, 200, 071-085.		59
149	Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Epigenetics and Chromatin, 2016, 9, 50.	3.9	53
150	Associations Between Colorectal Cancer Molecular Markers and Pathways With Clinicopathologic Features in Older Women. Gastroenterology, 2013, 145, 348-356.e2.	1.3	49
151	2′-Deoxy-N4-[2-(4-nitrophenyl)ethoxycarbonyl]-5-azacytidine: A novel inhibitor of DNA methyltransferase that requires activation by human carboxylesterase 1. Cancer Letters, 2008, 266, 238-248.	7.2	45
152	Promoter Hypermethylation of Tumor Suppressor Genes in Urine from Patients with Cervical Neoplasia. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1178-1184.	2.5	44
153	Mild Depletion of Dietary Folate Combined with Other B Vitamins Alters Multiple Components of the Wnt Pathway in Mouse Colon,. Journal of Nutrition, 2007, 137, 2701-2708.	2.9	42
154	Rapid and quantitative method of allele-specific DNA methylation analysis. BioTechniques, 2006, 41, 734-739.	1.8	41
155	Altered Folate Availability Modifies the Molecular Environment of the Human Colorectum: Implications for Colorectal Carcinogenesis. Cancer Prevention Research, 2011, 4, 530-543.	1.5	41
156	A pgk::hprt fusion as a selectable marker for targeting of genes in mouse embryonic stem cells: disruption of the T-cell receptor Î'-chain-encoding gene. Gene, 1991, 105, 263-267.	2.2	39
157	Microcell-Mediated Chromosome Transfer Identifies EPB41L3 as a Functional Suppressor of Epithelial Ovarian Cancers. Neoplasia, 2010, 12, 579-IN18.	5.3	38
158	Ovarian Cancer Early Detection Claims Are Biased. Clinical Cancer Research, 2008, 14, 7574.1-7574.	7.0	37
159	Hierarchical clustering of lung cancer cell lines using DNA methylation markers. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 291-7.	2.5	37
160	DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genomics, 2022, 2, 100144.	6.5	37
161	Postmenopausal hormone therapy and colorectal cancer risk by molecularly defined subtypes among older women. Gut, 2012, 61, 1299-1305.	12.1	36
162	Specific Variants in the MLH1 Gene Region May Drive DNA Methylation, Loss of Protein Expression, and MSI-H Colorectal Cancer. PLoS ONE, 2010, 5, e13314.	2.5	35

#	Article	IF	CITATIONS
163	Associations Between Intake of Folate and Related Micronutrients with Molecularly Defined Colorectal Cancer Risks in the Iowa Women's Health Study. Nutrition and Cancer, 2012, 64, 899-910.	2.0	33
164	DNA defects, epigenetics, and gene expression in cancer-adjacent breast: a study from The Cancer Genome Atlas. Npj Breast Cancer, 2016, 2, 16007.	5.2	33
165	Multiscale representation of genomic signals. Nature Methods, 2014, 11, 689-694.	19.0	31
166	Loss of Function of Trp 53, but Not Apc, Leads to the Development of Esophageal Adenocarcinoma in Mice with Jejunoesophageal Reflux. Journal of Surgical Research, 1999, 83, 48-55.	1.6	30
167	Hormone therapy, DNA methylation and colon cancer. Carcinogenesis, 2010, 31, 1060-1067.	2.8	30
168	Analysis of complex methylation data. Methods, 2002, 27, 170-178.	3.8	29
169	In Epigenetic Therapy, Less Is More. Cell Stem Cell, 2012, 10, 353-354.	11.1	29
170	Clinical applications of DNA methylation biomarkers in colorectal cancer. Epigenomics, 2013, 5, 105-108.	2.1	28
171	Diet, cancer and aging in DNA mismatch repair deficient mice. Carcinogenesis, 2002, 23, 1807-1810.	2.8	26
172	Sensitivity and reproducibility of standardized-competitive RT-PCR for transcript quantification and its comparison with real time RT-PCR. Molecular Cancer, 2004, 3, 5.	19.2	26
173	Controlled turnover and 3′ trimming of thetranssplicing precursor ofTrypanosoma brucei. Nucleic Acids Research, 1987, 15, 10087-10103.	14.5	24
174	Association of high microvessel $\hat{l}\pm v\hat{l}^23$ and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget, 2017, 8, 52193-52210.	1.8	24
175	Systematic Assessment of Tumor Purity and Its Clinical Implications. JCO Precision Oncology, 2020, 4, 995-1005.	3.0	23
176	Transgenic mice for the preparation of hygromycin-resistant primary embryonic fibroblast feeder layers for embryonic stem cell selections. Nucleic Acids Research, 1995, 23, 1273-1275.	14.5	22
177	A Blueprint for an International Cancer Epigenome Consortium. A Report from the AACR Cancer Epigenome Task Force. Cancer Research, 2012, 72, 6319-6324.	0.9	22
178	Promoter Methylation Analysis Reveals That <i>KCNA5</i> Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation. Molecular Cancer Research, 2016, 14, 26-34.	3.4	22
179	Clinicopathologic Risk Factor Distributions for $\langle i \rangle$ MLH1 $\langle i \rangle$ Promoter Region Methylation in CIMP-Positive Tumors. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 68-75.	2.5	21
180	Locking in on the human methylome. Nature Biotechnology, 2009, 27, 341-342.	17.5	19

#	Article	IF	CITATIONS
181	Reduction of pancreatic acinar cell tumor multiplicity in Dnmt1 hypomorphic mice. Carcinogenesis, 2011, 32, 829-835.	2.8	19
182	Promoter Hypermethylation: A New Therapeutic Target Emerges in Urothelial Cancer. Journal of Clinical Oncology, 2005, 23, 2879-2881.	1.6	18
183	DNA methylator and mismatch repair phenotypes are not mutually exclusive in colorectal cancer cell lines. Oncogene, 2000, 19, 943-952.	5.9	17
184	Gene-Specific Methylation and Subsequent Risk of Colorectal Adenomas among Participants of the Polyp Prevention Trial. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1219-1223.	2.5	17
185	Alcohol Intake and Colorectal Cancer Risk by Molecularly Defined Subtypes in a Prospective Study of Older Women. Cancer Prevention Research, 2011, 4, 2035-2043.	1.5	17
186	The Exceptional Responders Initiative: Feasibility of a National Cancer Institute Pilot Study. Journal of the National Cancer Institute, 2021, 113, 27-37.	6.3	17
187	Whole-genome characterization of lung adenocarcinomas lacking alterations in the RTK/RAS/RAF pathway. Cell Reports, 2021, 34, 108707.	6.4	16
188	Non-specific filtering of beta-distributed data. BMC Bioinformatics, 2014, 15, 199.	2.6	15
189	Cancer Risks for the Relatives of Colorectal Cancer Cases with a Methylated <i>MLH1</i> Promoter Region: Data from the Colorectal Cancer Family Registry. Cancer Prevention Research, 2012, 5, 328-335.	1.5	12
190	MethyLight and Digital MethyLight. Methods in Molecular Biology, 2018, 1708, 497-513.	0.9	11
191	Epigenetic Subgroups of Esophageal and Gastric Adenocarcinoma with Differential GATA5 DNA Methylation Associated with Clinical and Lifestyle Factors. PLoS ONE, 2011, 6, e25985.	2.5	10
192	\hat{I}^3 -Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. Genes and Nutrition, 2015, 10, 444.	2.5	10
193	The REMOTE-control system: a system for reversible and tunable control of endogenous gene expression in mice. Nucleic Acids Research, 2017, 45, 12256-12269.	14.5	10
194	Abstract S2-04: Comprehensive molecular characterization of invasive lobular breast tumors., 2015,,.		10
195	Transcriptional heterogeneity in the lactase gene within cell-type is linked to the epigenome. Scientific Reports, 2017, 7, 41843.	3.3	9
196	Abstract 3302: The molecular landscape of oncogenic signaling pathways in The Cancer Genome Atlas. , 2018, , .		9
197	Epigenomics-Based Diagnostics. Clinical Chemistry, 2010, 56, 1216-1219.	3.2	8
198	Phase I trial of TRC102 (methoxyamine HCl) in combination with temozolomide in patients with relapsed solid tumors and lymphomas. Oncotarget, 2020, 11, 3959-3971.	1.8	8

#	Article	IF	CITATIONS
199	Cluster analysis for DNA methylation profiles having a detection threshold. BMC Bioinformatics, 2006, 7, 361.	2.6	7
200	Institutional Profile: The USC Epigenome Center. Epigenomics, 2009, 1, 29-31.	2.1	7
201	Repeated assessment by high-throughput assay demonstrates that sperm DNA methylation levels areÂhighly reproducible. Fertility and Sterility, 2011, 96, 1325-1330.	1.0	7
202	Effects of folylpolyglutamate synthase modulation on global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. Journal of Nutritional Biochemistry, 2016, 29, 27-35.	4.2	7
203	Modeling Exposures for DNA Methylation Profiles. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 567-572.	2.5	5
204	Differences in Genome-wide DNA Methylation Profiles in Breast Milk by Race and Lactation Duration. Cancer Prevention Research, 2019, 12, 781-790.	1.5	5
205	Abstract LB-173: Genome-scale analysis of aberrant DNA methylation in colorectal cancer., 2011,,.		5
206	Alterations in Deoxyribonucleic Acid (DNA) Methylation Patterns of Calca, Timp3, Mmp2, and Igf2r Are Associated With Chronic Cystitis in a Cyclophosphamide-induced Mouse Model. Urology, 2013, 82, 253.e9-253.e15.	1.0	4
207	Comprehensive molecular characterization and analysis of muscle-invasive urothelial carcinomas Journal of Clinical Oncology, 2017, 35, 4500-4500.	1.6	4
208	Modeling measurement error in tumor characterization studies. BMC Bioinformatics, 2011, 12, 284.	2.6	3
209	Epi Meets Genomics: Technologies for Finding and Reading the 5th Base. , 2005, , 39-64.		2
210	In vivo Application of the REMOTE-control System for the Manipulation of Endogenous Gene Expression. Journal of Visualized Experiments, 2019, , .	0.3	2
211	Analytical protocol to identify local ancestry-associated molecular features in cancer. STAR Protocols, 2021, 2, 100766.	1.2	2
212	Abstract 2969: Progress in The Cancer Genome Atlas bladder cancer project. , 2015, , .		2
213	How epigenomics broke the mold: an interview with Peter WÂLaird. Epigenomics, 2022, 14, 303-308.	2.1	2
214	Abstract GS3-08: Multiplatform analysis of matched primary and metastatic breast tumors from the AURORA US Network. , 2020, , .		1
215	Comprehensive molecular profiling of urothelial bladder cancer at the DNA, RNA, and protein levels: A TCGA project Journal of Clinical Oncology, 2014, 32, 4509-4509.	1.6	1
216	Comprehensive characterization of 412 muscle invasive urothelial carcinomas: Final analysis of The Cancer Genome Atlas (TCGA) project Journal of Clinical Oncology, 2016, 34, 405-405.	1.6	1

#	Article	IF	CITATIONS
217	Abstract LB-373: Comprehensive analysis of cancer stemness. , 2018, , .		1
218	Abstract 5327: DNA methylation loss in late-replicating domains is linked to mitotic cell division. , 2018, , .		1
219	The mutagenic potential of duodeno-gastroesophageal reflux. Gastroenterology, 2000, 118, A1535.	1.3	0
220	The mutagenic potential of duodeno-gastroesophageal reflux. Gastroenterology, 2000, 118, A1060.	1.3	0
221	P-291 Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer, 2003, 41, S165-S166.	2.0	0
222	DNA Methylation in Colorectal Cancer: Multiple Facets of Tumorigenesis. , 2009, , 73-95.		0
223	S1950 Folate Intake and Colorectal Cancer Risks By CIMP and BRAF-Mutation Status Among Older Women. Gastroenterology, 2009, 136, A-299-A-300.	1.3	0
224	146 Diabetes Mellitus (DM) and Colorectal Cancer (CRC) Risk by Molecularly-Defined Subtypes in a Prospective Study of Older Women. Gastroenterology, 2010, 138, S-28.	1.3	0
225	Exploring the cancer methylome. BMC Proceedings, 2012, 6, .	1.6	0
226	All Things in Moderation: Prevention of Intestinal Adenomas by DNA Hypomethylation. Cancer Prevention Research, 2016, 9, 509-511.	1.5	0
227	Abstract 1620: Effects of \hat{i}^3 -glutamyl hydrolase and folylpolyglutamyl synthase modulation on gene-specific promoter CpG island methylation. , 2011, , .		0
228	Abstract SY15-01: Modeling the initiation of Ewing sarcoma in human neural crest stem cells. , 2011, , .		0
229	Abstract LB-233: Modeling Ewing sarcoma initiation in human neural crest stem cells. , 2011, , .		0
230	Abstract 5518: Clinicopathologic associations with colorectal cancer molecular pathways in a cohort study of older women. , 2012, , .		0
231	Abstract 4492: Colorectal cancer survival by molecular subtypes in a population-based cohort of older women., 2012,,.		0
232	Abstract PL02-01: Cancer genetic and epigenetic interactions, 2013, , .		0
233	Abstract B130: The intratumoral heterogeneity of glioblastoma suggests a pivotal role for clonal evolution , 2013, , .		0
234	Molecular subtypes of colorectal cancer in relation to disease survival Journal of Clinical Oncology, 2014, 32, 451-451.	1.6	0

#	Article	IF	CITATIONS
235	Abstract 984: Alteration of the p53 pathway is associated with subclonal tumor progression in glioblastoma. , $2014, $, .		O
236	Abstract 987: Comprehensive characterization of urothelial bladder cancer: a TCGA Project update. , 2014, , .		0
237	Abstract 3288: The KCNA5 promoter is hypermethylated in Ewing sarcoma and silencing contributes to cell proliferation. , 2015, , .		O
238	Abstract 128: Comprehensive molecular characterization of 412 muscle-invasive urothelial bladder carcinomas: final analysis of The Cancer Genome Atlas (TCGA) project., 2016,,.		0
239	Abstract 5381: A highly sensitive method for noninvasive cancer profiling through targeted methylation sequencing of circulating cell-free DNA. , 2017, , .		O
240	Abstract LB-004: Molecular hallmarks of cancer: Stemness. , 2017, , .		0
241	Abstract 5312: The effect of Dnmt1 over expression on intestinal tumorigenesis., 2018,,.		0