Martin Horn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1969230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly potent inhibitors of cathepsin K with a differently positioned cyanohydrazide warhead: structural analysis of binding mode to mature and zymogen-like enzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 515-526.	5.2	5
2	Druggable Hot Spots in the Schistosomiasis Cathepsin B1 Target Identified by Functional and Binding Mode Analysis of Potent Vinyl Sulfone Inhibitors. ACS Infectious Diseases, 2021, 7, 1077-1088.	3.8	9
3	Azanitrile Inhibitors of the SmCB1 Protease Target Are Lethal to <i>Schistosoma mansoni</i> : Structural and Mechanistic Insights into Chemotype Reactivity. ACS Infectious Diseases, 2021, 7, 189-201.	3.8	9
4	Spatial expression pattern of serine proteases in the blood fluke Schistosoma mansoni determined by fluorescence RNA in situ hybridization. Parasites and Vectors, 2021, 14, 274.	2.5	2
5	An Activity-Based Probe for Cathepsin K Imaging with Excellent Potency and Selectivity. Journal of Medicinal Chemistry, 2021, 64, 13793-13806.	6.4	10
6	Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure–Activity Relationship and Binding Mode Analysis. Journal of Medicinal Chemistry, 2020, 63, 1576-1596.	6.4	19
7	Structural and Functional Characterization of Schistosoma mansoni Cathepsin B1. Methods in Molecular Biology, 2020, 2151, 145-158.	0.9	5
8	Sensitive Fluorescence In Situ Hybridization on Semithin Sections of Adult Schistosoma mansoni Using DIG-Labeled RNA Probes. Methods in Molecular Biology, 2020, 2151, 43-53.	0.9	2
9	Collection of Excretory/Secretory Products from Individual Developmental Stages of the Blood Fluke Schistosoma mansoni. Methods in Molecular Biology, 2020, 2151, 55-63.	0.9	5
10	Characterization ofP. falciparumdipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptideâ€based substrates and covalent inhibitors. FEBS Journal, 2019, 286, 3998-4023.	4.7	7
11	Serine proteases in schistosomes and other trematodes. International Journal for Parasitology, 2018, 48, 333-344.	3.1	15
12	Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite. Cell Chemical Biology, 2018, 25, 318-329.e4.	5.2	14
13	SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties. PLoS Neglected Tropical Diseases, 2018, 12, e0006446.	3.0	26
14	Profiling system for skin kallikrein proteolysis applied in gene-deficient mouse models. Biological Chemistry, 2018, 399, 1085-1089.	2.5	2
15	Digestive proteolysis in the Colorado potato beetle, Leptinotarsa decemlineata: Activity-based profiling and imaging of a multipeptidase network. Insect Biochemistry and Molecular Biology, 2016, 78, 1-11.	2.7	11
16	Multienzyme degradation of host serum albumin in ticks. Ticks and Tick-borne Diseases, 2016, 7, 604-613.	2.7	34
17	Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie, 2016, 122, 99-109.	2.6	31
18	Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors. PLoS Neglected Tropical Diseases, 2015, 9, e0003827.	3.0	34

MARTIN HORN

#	Article	IF	CITATIONS
19	Trypsin- and Chymotrypsin-Like Serine Proteases in Schistosoma mansoni – â€~The Undiscovered Country'. PLoS Neglected Tropical Diseases, 2014, 8, e2766.	3.0	31
20	Activation Route of the Schistosoma mansoni Cathepsin B1 Drug Target: Structural Map with a Glycosaminoglycan Switch. Structure, 2014, 22, 1786-1798.	3.3	34
21	A Coumarin‣abeled Vinyl Sulfone as Tripeptidomimetic Activityâ€Based Probe for Cysteine Cathepsins. ChemBioChem, 2014, 15, 955-959.	2.6	45
22	Quantum Mechanics-Based Scoring Rationalizes the Irreversible Inactivation of Parasitic <i>Schistosoma mansoni</i> Cysteine Peptidase by Vinyl Sulfone Inhibitors. Journal of Physical Chemistry B, 2013, 117, 14973-14982.	2.6	43
23	New insights into the machinery of blood digestion by ticks. Trends in Parasitology, 2013, 29, 276-285.	3.3	171
24	Characterization of Gut-associated Cathepsin D Hemoglobinase from Tick Ixodes ricinus (IrCD1). Journal of Biological Chemistry, 2012, 287, 21152-21163.	3.4	36
25	Complex modulation of peptidolytic activity of cathepsin D by sphingolipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 1097-1104.	2.4	11
26	Mapping the Pro-Peptide of the <i>Schistosoma mansoni</i> Cathepsin B1 Drug Target: Modulation of Inhibition by Heparin and Design of Mimetic Inhibitors. ACS Chemical Biology, 2011, 6, 609-617.	3.4	34
27	Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma mansoni. Journal of Biological Chemistry, 2011, 286, 35770-35781.	3.4	60
28	IrCL1 – The haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. International Journal for Parasitology, 2011, 41, 1253-1262.	3.1	40
29	Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick <i>Ornithodoros moubata</i> . Biochemical Journal, 2010, 429, 103-112.	3.7	73
30	Single―and Doubleâ€Headed Chemical Probes for Detection of Active Cathepsin D in a Cancer Cell Proteome. ChemBioChem, 2010, 11, 1538-1541.	2.6	5
31	RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening. PLoS Neglected Tropical Diseases, 2010, 4, e850.	3.0	107
32	Digestive α â€amylases of the flour moth <i>Ephestia kuehniella</i> – adaptation to alkaline environment and plant inhibitors. FEBS Journal, 2009, 276, 3531-3546.	4.7	51
33	Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics. Chemistry and Biology, 2009, 16, 1053-1063.	6.0	156
34	Profiling of proteolytic enzymes in the gut of the tick lxodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites and Vectors, 2008, 1, 7.	2.5	71
35	Cathepsin D Propeptide: Mechanism and Regulation of Its Interaction with the Catalytic Coreâ€. Biochemistry, 2006, 45, 15474-15482.	2.5	32
36	Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biological Chemistry, 2006, 387, 1635-44.	2.5	64

Martin Horn

#	Article	IF	CITATIONS
37	Inhibitory specificity and insecticidal selectivity of ?-amylase inhibitor from. Phytochemistry, 2005, 66, 31-39.	2.9	53
38	De Novo Design of α-Amylase Inhibitor: A Small Linear Mimetic of Macromolecular Proteinaceous Ligands. Chemistry and Biology, 2005, 12, 1349-1357.	6.0	25
39	Activation processing of cathepsin H impairs recognition by its propeptide. Biological Chemistry, 2005, 386, 941-7.	2.5	11
40	Differential Elicitation of Two Processing Proteases Controls the Processing Pattern of the Trypsin Proteinase Inhibitor Precursor in Nicotiana attenuata. Plant Physiology, 2005, 139, 375-388.	4.8	34
41	Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I). Protein Science, 2002, 11, 933-943.	7.6	19
42	Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. Journal of Chemical Ecology, 2001, 27, 547-568.	1.8	236
43	Arginine-based structures are specific inhibitors of cathepsin C. FEBS Journal, 2000, 267, 3330-3336.	0.2	26