
## Sheila McCormick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1967671/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens.<br>Plant Cell Reports, 1986, 5, 81-84.                                                                                                                         | 5.6 | 528       |
| 2  | Control of Male Gametophyte Development. Plant Cell, 2004, 16, S142-S153.                                                                                                                                                                                     | 6.6 | 512       |
| 3  | TECHNICAL ADVANCE: Temperature as a determinant factor for increased and reproducible<br><i>inÂvitro</i> pollen germination in <i>Arabidopsis thaliana</i> . Plant Journal, 2007, 52, 570-582.                                                                | 5.7 | 354       |
| 4  | Comparative Transcriptomics of Arabidopsis Sperm Cells Â. Plant Physiology, 2008, 148, 1168-1181.                                                                                                                                                             | 4.8 | 339       |
| 5  | A Large Family of Genes That Share Homology withCLAVATA3. Plant Physiology, 2001, 126, 939-942.                                                                                                                                                               | 4.8 | 316       |
| 6  | Isolation and expression of an anther-specific gene from tomato. Molecular Genetics and Genomics, 1989, 217, 240-245.                                                                                                                                         | 2.4 | 270       |
| 7  | Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics, 2005, 5, 4864-4884.                                                                                                                                                                    | 2.2 | 238       |
| 8  | A compendium of methods useful for characterizing <i>Arabidopsis</i> pollen mutants and gametophytically―expressed genes. Plant Journal, 2004, 39, 761-775.                                                                                                   | 5.7 | 233       |
| 9  | LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA<br>hydrates and germinates abnormally and cannot achieve fertilization. Plant Journal, 1994, 6, 321-338.                                                      | 5.7 | 209       |
| 10 | Transient Expression of Chimeric Genes Delivered into Pollen by Microprojectile Bombardment. Plant<br>Physiology, 1989, 91, 1270-1274.                                                                                                                        | 4.8 | 197       |
| 11 | RNA-Seq of Arabidopsis Pollen Uncovers Novel Transcription and Alternative Splicing   Â. Plant<br>Physiology, 2013, 162, 1092-1109.                                                                                                                           | 4.8 | 195       |
| 12 | A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small<br>GTPase Rop in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the<br>United States of America, 2007, 104, 18830-18835. | 7.1 | 194       |
| 13 | A Cysteine-Rich Extracellular Protein, LAT52, Interacts with the Extracellular Domain of the Pollen<br>Receptor Kinase LePRK2[W]. Plant Cell, 2002, 14, 2277-2287.                                                                                            | 6.6 | 185       |
| 14 | Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity<br>to pectate lyases of the plant pathogen Erwinia. Plant Molecular Biology, 1990, 14, 17-28.                                                              | 3.9 | 167       |
| 15 | Green Sperm. Identification of Male Gamete Promoters in Arabidopsis. Plant Physiology, 2005, 138, 2124-2133.                                                                                                                                                  | 4.8 | 155       |
| 16 | Proper regulation of a sperm-specific <i>cis</i> -nat-siRNA is essential for double fertilization in<br><i>Arabidopsis</i> . Genes and Development, 2010, 24, 1010-1021.                                                                                      | 5.9 | 152       |
| 17 | Sperm cells of <i>Zea mays</i> have a complex complement of mRNAs. Plant Journal, 2003, 34, 697-707.                                                                                                                                                          | 5.7 | 151       |
| 18 | Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant Journal, 2005, 42, 492-503.                                                                                              | 5.7 | 150       |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pollen Tube Localization Implies a Role in Pollen–Pistil Interactions for the Tomato Receptor-like<br>Protein Kinases LePRK1 and LePRK2. Plant Cell, 1998, 10, 319-330.                                                                               | 6.6 | 146       |
| 20 | LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growthin vitro. Plant Journal, 2004, 39, 343-353.                                                                                   | 5.7 | 139       |
| 21 | Male Gametophyte Development. Plant Cell, 1993, 5, 1265.                                                                                                                                                                                              | 6.6 | 128       |
| 22 | The Arabidopsis Gene Tardy Asynchronous Meiosis Is Required for the Normal Pace and Synchrony of<br>Cell Division during Male Meiosis. Plant Physiology, 2001, 127, 1157-1166.                                                                        | 4.8 | 113       |
| 23 | <i>PROCERA</i> encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant<br>Journal, 2008, 56, 603-612.                                                                                                                   | 5.7 | 110       |
| 24 | Pollen Germinates Precociously in the Anthers of raring-to-go, an Arabidopsis Gametophytic Mutant.<br>Plant Physiology, 2001, 126, 685-695.                                                                                                           | 4.8 | 93        |
| 25 | Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development (Cambridge), 2003, 130, 4405-4415.                                                                                  | 2.5 | 91        |
| 26 | A Collection of <i>Ds</i> Insertional Mutants Associated With Defects in Male Gametophyte<br>Development and Function in <i>Arabidopsis thaliana</i> . Genetics, 2009, 181, 1369-1385.                                                                | 2.9 | 84        |
| 27 | Interdependence of Endomembrane Trafficking and Actin Dynamics during Polarized Growth of<br>Arabidopsis Pollen Tubes   Â. Plant Physiology, 2010, 152, 2200-2210.                                                                                    | 4.8 | 83        |
| 28 | The Pollen Receptor Kinase LePRK2 Mediates Growth-Promoting Signals and Positively Regulates<br>Pollen Germination and Tube Growth Â. Plant Physiology, 2008, 148, 1368-1379.                                                                         | 4.8 | 78        |
| 29 | Pollen Tube Localization Implies a Role in Pollen-Pistil Interactions for the Tomato Receptor-Like<br>Protein Kinases LePRK1 and LePRK2. Plant Cell, 1998, 10, 319.                                                                                   | 6.6 | 75        |
| 30 | New pollen-specific receptor kinases identified in tomato, maize and Arabidopsis: the tomato kinases<br>show overlapping but distinct localization patterns on pollen tubes. Plant Molecular Biology, 2002,<br>50, 1-16.                              | 3.9 | 65        |
| 31 | The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate<br>in the presence of style extract. Proceedings of the National Academy of Sciences of the United States<br>of America, 2003, 100, 6860-6865. | 7.1 | 64        |
| 32 | Tomato Pistil Factor STIG1 Promotes in Vivo Pollen Tube Growth by Binding to Phosphatidylinositol<br>3-Phosphate and the Extracellular Domain of the Pollen Receptor Kinase LePRK2. Plant Cell, 2014, 26,<br>2505-2523.                               | 6.6 | 64        |
| 33 | Arabidopsis Tetraspanins Are Confined to Discrete Expression Domains and Cell Types in Reproductive<br>Tissues and Form Homo- and Heterodimers When Expressed in Yeast   Â. Plant Physiology, 2013, 163,<br>696-712.                                  | 4.8 | 60        |
| 34 | Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube<br>growth. Plant Journal, 2004, 39, 643-654.                                                                                                | 5.7 | 55        |
| 35 | GEX3, Expressed in the Male Gametophyte and in the Egg Cell of Arabidopsis thaliana Is Essential for<br>Micropylar Pollen Tube Guidance and Plays a Role during Early Embryogenesis. Molecular Plant, 2008,<br>1, 586-598.                            | 8.3 | 55        |
|    |                                                                                                                                                                                                                                                       |     |           |

Transformation of tomato with Agrobacterium tumefaciens., 1991,, 311-319.

54

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes. Plant Journal, 2009, 58, 474-484.                                                                                                                                 | 5.7  | 48        |
| 38 | <i>S</i> -Adenosylmethionine Synthetase 3 Is Important for Pollen Tube Growth. Plant Physiology, 2016, 172, 244-253.                                                                                                                                 | 4.8  | 47        |
| 39 | The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth.<br>Sexual Plant Reproduction, 2010, 23, 87-93.                                                                                                   | 2.2  | 40        |
| 40 | Overexpression of <i>Arabidopsis thaliana PTEN</i> caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3â€phosphate dynamics. Plant Journal, 2011, 68, 1081-1092.                                            | 5.7  | 40        |
| 41 | <i>Arabidopsis thaliana</i> GEX1 has dual functions in gametophyte development and early<br>embryogenesis. Plant Journal, 2011, 68, 620-632.                                                                                                         | 5.7  | 37        |
| 42 | Callose plug deposition patterns vary in pollen tubes of Arabidopsis thaliana ecotypes and tomato species. BMC Plant Biology, 2012, 12, 178.                                                                                                         | 3.6  | 32        |
| 43 | Overexpression of the Tomato Pollen Receptor Kinase LePRK1 Rewires Pollen Tube Growth to a<br>Blebbing Mode. Plant Cell, 2014, 26, 3538-3555.                                                                                                        | 6.6  | 32        |
| 44 | An ARID Domain-Containing Protein within Nuclear Bodies Is Required for Sperm Cell Formation in<br>Arabidopsis thaliana. PLoS Genetics, 2014, 10, e1004421.                                                                                          | 3.5  | 31        |
| 45 | The juxtamembrane and carboxy-terminal domains of Arabidopsis PRK2 are critical for ROP-induced growth in pollen tubes. Journal of Experimental Botany, 2013, 64, 5599-5610.                                                                         | 4.8  | 30        |
| 46 | Gametophytic and Sporophytic Expression of Anther-Specific Genes in Developing Tomato Anthers.<br>Plant Cell, 1989, 1, 727.                                                                                                                          | 6.6  | 29        |
| 47 | Self-incompatibility and other pollen-pistil interactions. Current Opinion in Plant Biology, 1998, 1, 18-25.                                                                                                                                         | 7.1  | 28        |
| 48 | STIL, a peculiar molecule from styles, specifically dephosphorylates the pollen receptor kinase LePRK2 and stimulates pollen tube growth in vitro. BMC Plant Biology, 2010, 10, 33.                                                                  | 3.6  | 28        |
| 49 | AGCVIII kinases: at the crossroads of cellular signaling. Trends in Plant Science, 2009, 14, 689-695.                                                                                                                                                | 8.8  | 23        |
| 50 | Pollen. Current Biology, 2013, 23, R988-R990.                                                                                                                                                                                                        | 3.9  | 22        |
| 51 | Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement<br>from the vegetative cell to sperm. Proceedings of the National Academy of Sciences of the United<br>States of America, 2015, 112, 13378-13383. | 7.1  | 21        |
| 52 | Reproductive Dialog. Science, 2007, 317, 606-607.                                                                                                                                                                                                    | 12.6 | 20        |
| 53 | Is there more than one way to attract a pollen tube?. Trends in Plant Science, 2005, 10, 260-263.                                                                                                                                                    | 8.8  | 18        |
| 54 | Signaling in pollen–pistil interactions. Seminars in Cell and Developmental Biology, 1999, 10, 139-147.                                                                                                                                              | 5.0  | 17        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A role for PHANTASTICA in medio-lateral regulation of adaxial domain development in tomato and tobacco leaves. Annals of Botany, 2012, 109, 407-418.                                                    | 2.9 | 16        |
| 56 | Gametophytic Selfâ€Incompatibility Is Operative in <i>Miscanthus sinensis</i> (Poaceae) and Is Affected by Pistil Age. Crop Science, 2017, 57, 1948-1956.                                               | 1.8 | 10        |
| 57 | Heterochromatic silencing is reinforced by ARID1â€mediated small RNA movement in Arabidopsis pollen.<br>New Phytologist, 2021, 229, 3269-3280.                                                          | 7.3 | 10        |
| 58 | Abscisic acid (ABA) receptors: light at the end of the tunnel. F1000 Biology Reports, 2010, 2, .                                                                                                        | 4.0 | 9         |
| 59 | Chloroplastâ€ŧargeted antioxidant protein protects against necrotrophic fungal attack. Plant Journal,<br>2017, 92, 759-760.                                                                             | 5.7 | 9         |
| 60 | Rhizobial strainâ€dependent restriction of nitrogen fixation in a legumeâ€ <i>Rhizobium</i> symbiosis.<br>Plant Journal, 2018, 93, 3-4.                                                                 | 5.7 | 9         |
| 61 | Kinase Partner Protein Plays a Key Role in Controlling the Speed and Shape of Pollen Tube Growth in<br>Tomato. Plant Physiology, 2020, 184, 1853-1869.                                                  | 4.8 | 7         |
| 62 | Molecular biology of male gametogenesis. Euphytica, 1994, 79, 245-250.                                                                                                                                  | 1.2 | 6         |
| 63 | The Arabidopsis MEI1 gene likely encodes a protein with BRCT domains. Sexual Plant Reproduction, 2002, 14, 355-357.                                                                                     | 2.2 | 5         |
| 64 | Regulation of pollen tube polarity. Plant Signaling and Behavior, 2008, 3, 345-347.                                                                                                                     | 2.4 | 5         |
| 65 | Manipulating the cell/air space ratio to optimize photosynthesis. Plant Journal, 2017, 92, 979-980.                                                                                                     | 5.7 | 4         |
| 66 | Ta Ta for now: <i>Thlapsi arvense</i> (pennycress), an emerging model for genetic analyses. Plant<br>Journal, 2018, 96, 1091-1092.                                                                      | 5.7 | 4         |
| 67 | Remembrance of stresses past: heat shock factors and histone hypermethylation are key. Plant Journal, 2018, 95, 399-400.                                                                                | 5.7 | 4         |
| 68 | <scp>RNA</scp> â€directed <scp>DNA</scp> methylation and seed development: an unexpected difference<br>between <i>Arabidopsis thaliana</i> and <i>Brassica rapa</i> . Plant Journal, 2018, 94, 573-574. | 5.7 | 3         |
| 69 | Binding sites for pentatricopeptide repeat proteins differentially activate chloroplast transgenes.<br>Plant Journal, 2018, 94, 6-7.                                                                    | 5.7 | 3         |
| 70 | Directed evolution of <scp>DGAT</scp> 1 to increase triacylglycerol content. Plant Journal, 2017, 92, 165-166.                                                                                          | 5.7 | 2         |
| 71 | A 3â€dimensional biomechanical model of guard cell mechanics. Plant Journal, 2017, 92, 3-4.                                                                                                             | 5.7 | 2         |
|    |                                                                                                                                                                                                         |     |           |

Transformation of pollen by particle bombardment. , 1991, , 631-644.

2

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Cell-specific cis-natural antisense transcripts (cis-NATs) in the sperm and the pollen vegetative cells<br>of Arabidopsis thaliana. F1000Research, 2018, 7, 93. | 1.6 | 2         |
| 74 | A Strong Inhibitor of Gene Expression in the 5' Untranslated Region of the Pollen-Specific LAT59 Gene of Tomato. Plant Cell, 1997, 9, 2025.                     | 6.6 | 1         |
| 75 | Is there more to plant reproduction?. Trends in Plant Science, 2002, 7, 421.                                                                                    | 8.8 | 1         |
| 76 | Surprise: The classic <i>white seedling 3</i> mutant in maize lacks plastoquinoneâ€9 but can still make carotenoids. Plant Journal, 2018, 93, 797-798.          | 5.7 | 1         |
| 77 | Unilateral incompatibility is linked to reduced pollen expression of a farnesyl pyrophosphate synthase. Plant Journal, 2018, 93, 415-416.                       | 5.7 | 1         |
| 78 | Using <i>Brachypodium distachyon</i> natural populations to uncover genomic regions under selection. Plant Journal, 2018, 96, 485-486.                          | 5.7 | 1         |
| 79 | A nonâ€invasive and versatile way to assess plasmodesmatal connections. Plant Journal, 2018, 94, 749-750.                                                       | 5.7 | 1         |
| 80 | Location, location, location: lipid metabolism varies in different parts of the seed. Plant Journal, 2018,<br>94, 913-914.                                      | 5.7 | 1         |
| 81 | Polycomb Repressive Complex 1 and links to <scp>RNA</scp> processes in <i>Physcomitrella patens</i> .<br>Plant Journal, 2019, 97, 219-220.                      | 5.7 | 1         |
| 82 | Pollen Specificity Elements Reside in 30 bp of the Proximal Promoters of Two Pollen-Expressed Genes.<br>Plant Cell, 1995, 7, 373.                               | 6.6 | 0         |
| 83 | Edward H. Coe, Jr.: An Advocate for Green Power. , 1999, , 247-250.                                                                                             |     | Ο         |
| 84 | Discovery of new QTLs underlying hybrid fertility and reproductive isolation in rice. Plant Journal, 2017, 92, 347-348.                                         | 5.7 | 0         |
| 85 | New tools to assess cell polarity and division in the developing Arabidopsis embryo. Plant Journal, 2018, 93, 961-962.                                          | 5.7 | Ο         |
| 86 | An arbuscular mycorrhizal fungus adjusts its secretome depending on developmental stage and host<br>plant. Plant Journal, 2018, 94, 409-410.                    | 5.7 | 0         |
| 87 | Nanoscale imaging of xyloglucan in plant cell walls. Plant Journal, 2018, 93, 209-210.                                                                          | 5.7 | Ο         |
| 88 | Assessing transcriptional network changes accompanying cell differentiation. Plant Journal, 2018, 94, 213-214.                                                  | 5.7 | 0         |
| 89 | <scp>MEDIATOR</scp> 18 modulates viability of root initial cells. Plant Journal, 2018, 96, 893-894.                                                             | 5.7 | 0         |
| 90 | Undegraded peptides in organelles convey toxic signals. Plant Journal, 2018, 96, 703-704.                                                                       | 5.7 | 0         |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Altered phenotypes via graftâ€ŧransmitted si <scp>RNA</scp> s. Plant Journal, 2018, 96, 3-4.                                                                                                                                        | 5.7 | Ο         |
| 92 | <scp>mRNA</scp> degradationâ€based biosensors for boron. Plant Journal, 2018, 95, 761-762.                                                                                                                                          | 5.7 | 0         |
| 93 | Regulation of diurnal growth: phytochrome interacting factor 5 is degraded by the E3 ubiquitin ligase<br><scp>CUL</scp> 4 <scp><sup>COP</sup></scp> <sup>1â€</sup> <scp><sup>SPA</sup></scp> . Plant Journal,<br>2018, 96, 249-250. | 5.7 | Ο         |
| 94 | Recombinases and <i>rhizogenes</i> for easy gene stacking. Plant Journal, 2018, 95, 571-572.                                                                                                                                        | 5.7 | 0         |
| 95 | Red fruit, orange fruit, orange fruit, red fruit: genome editing in tomato. Plant Journal, 2018, 95, 3-4.                                                                                                                           | 5.7 | 0         |