Brian N Finck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Novel Mitochondrial Pyruvate Carrier Inhibitors by Homology Modeling and Pharmacophore-Based Virtual Screening. Biomedicines, 2022, 10, 365.	3.2	8
2	Mitochondrial pyruvate carrier inhibitors improve metabolic parameters in diet-induced obese mice. Journal of Biological Chemistry, 2022, 298, 101554.	3.4	20
3	Driving arginine catabolism to activate systemic autophagy. , 2022, 1, 65-69.		3
4	Something to mTORC About in NASH. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	4.5	0
5	Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids. Cell Reports, 2022, 39, 110733.	6.4	18
6	The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E33-E52.	3.5	13
7	Targeting hepatocyte carbohydrate transport to mimic fasting and calorie restriction. FEBS Journal, 2021, 288, 3784-3798.	4.7	8
8	Monoacylglycerol Acyltransferase 1 Knockdown Exacerbates Hepatic Ischemia/Reperfusion Injury in Mice With Hepatic Steatosis. Liver Transplantation, 2021, 27, 116-133.	2.4	12
9	Importance of Adipose Tissue NAD+ Biology in Regulating Metabolic Flexibility. Endocrinology, 2021, 162, .	2.8	12
10	Dynamic Shifts in the Composition of Resident and Recruited Macrophages Influence Tissue Remodeling in NASH. Cell Reports, 2021, 34, 108626.	6.4	164
11	Myocardial Lipin 1 knockout in mice approximates cardiac effects of human LPIN1 mutations. JCI Insight, 2021, 6, .	5.0	12
12	Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nature Reviews Endocrinology, 2021, 17, 484-495.	9.6	224
13	Multiple antisense oligonucleotides targeted against monoacylglycerol acyltransferase 1 (Mogat1) improve glucose metabolism independently of Mogat1. Molecular Metabolism, 2021, 49, 101204.	6.5	8
14	Exogenous phosphatidic acid reduces acetaminophen-induced liver injury in mice by activating hepatic interleukin-6 signaling through inter-organ crosstalk. Acta Pharmaceutica Sinica B, 2021, 11, 3836-3846.	12.0	11
15	Myeloid-associated lipin-1 transcriptional co-regulatory activity is atheroprotective. Atherosclerosis, 2021, 330, 76-84.	0.8	3
16	Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor. Journal of Medicinal Chemistry, 2021, 64, 17545-17571.	6.4	27
17	Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity. Biomolecules, 2020, 10, 1386.	4.0	26
18	Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice. Nature Metabolism, 2020, 2, 1232-1247.	11.9	74

#	Article	IF	CITATIONS
19	Lipin-1 Contributes to IL-4 Mediated Macrophage Polarization. Frontiers in Immunology, 2020, 11, 787.	4.8	14
20	NADPH and Glutathione Redox Link TCA Cycle Activity to Endoplasmic Reticulum Homeostasis. IScience, 2020, 23, 101116.	4.1	51
21	Macrophage-Associated Lipin-1 Promotes β-Oxidation in Response to Proresolving Stimuli. ImmunoHorizons, 2020, 4, 659-669.	1.8	8
22	Loss of lipin 1â€mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice. FASEB Journal, 2019, 33, 652-667.	0.5	30
23	The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. Journal of Biological Chemistry, 2019, 294, 13366-13377.	3.4	52
24	Treating Hepatic Steatosis and Fibrosis by Modulating Mitochondrial Pyruvate Metabolism. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 275-284.	4.5	27
25	A mutation in Siteâ€l Protease is associated with a complex phenotype that includes episodic hyperCKemia and focal myoedema. Molecular Genetics & Genomic Medicine, 2019, 7, e00733.	1.2	13
26	Fasting-Induced Transcription Factors Repress Vitamin D Bioactivation, a Mechanism for Vitamin D Deficiency in Diabetes. Diabetes, 2019, 68, 918-931.	0.6	42
27	Hepatic monoacylglycerol acyltransferase 1 is induced by prolonged food deprivation to modulate the hepatic fasting response. Journal of Lipid Research, 2019, 60, 528-538.	4.2	12
28	Fatty Acid Oxidation Promotes Cardiomyocyte Proliferation Rate but Does Not Change Cardiomyocyte Number in Infant Mice. Frontiers in Cell and Developmental Biology, 2019, 7, 42.	3.7	39
29	Fatty Acid Desaturation Gets a NAD+ Reputation. Cell Metabolism, 2019, 29, 790-792.	16.2	4
30	The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food and Chemical Toxicology, 2019, 125, 279-288.	3.6	24
31	Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid. Endocrinology, 2018, 159, 609-621.	2.8	12
32	Lipin deactivation after acetaminophen overdose causes phosphatidic acid accumulation in liver and plasma in mice and humans and enhances liver regeneration. Food and Chemical Toxicology, 2018, 115, 273-283.	3.6	27
33	Reply. Hepatology, 2018, 67, 2055-2056.	7.3	2
34	Macrophage-Associated Lipin-1 Enzymatic Activity Contributes to Modified Low-Density Lipoprotein–Induced Proinflammatory Signaling and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 324-334.	2.4	34
35	Targeting Metabolism, Insulin Resistance, and Diabetes to Treat Nonalcoholic Steatohepatitis. Diabetes, 2018, 67, 2485-2493.	0.6	82
36	Metabolic importance of adipose tissue monoacylglycerol acyltransferase 1 in mice and humans. Journal of Lipid Research, 2018, 59, 1630-1639.	4.2	25

#	Article	IF	CITATIONS
37	The impact of dietâ€induced hepatic steatosis in a murine model of hepatic ischemia/reperfusion injury. Liver Transplantation, 2018, 24, 908-921.	2.4	25
38	Highâ€fatâ€dietâ€induced remission of diabetes in a subset of K ATP â€GOF insulinâ€secretoryâ€deficient mice. Diabetes, Obesity and Metabolism, 2018, 20, 2574-2584.	4.4	7
39	Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21. JCI Insight, 2018, 3, .	5.0	25
40	Mogat1 is a fastingâ€induced PPARα target gene that plays a role in coordinating the hepatic response to food deprivation. FASEB Journal, 2018, 32, 812.14.	0.5	0
41	PPARs and nonalcoholic fatty liver disease. Biochimie, 2017, 136, 65-74.	2.6	210
42	The beneficial metabolic effects of insulin sensitizers are not attenuated by mitochondrial pyruvate carrier 2 hypomorphism. Experimental Physiology, 2017, 102, 985-999.	2.0	18
43	Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology, 2017, 65, 1543-1556.	7.3	110
44	Treating fatty liver disease by modulating mitochondrial pyruvate metabolism. Hepatology Communications, 2017, 1, 193-197.	4.3	21
45	ChREBP refines the hepatic response to fructose to protect the liver from injury. Journal of Clinical Investigation, 2017, 127, 2533-2535.	8.2	7
46	An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion. Molecular Metabolism, 2016, 5, 602-614.	6.5	36
47	Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity, 2016, 45, 60-73.	14.3	212
48	Myeloid Cell-Specific Lipin-1 Deficiency Stimulates Endocrine Adiponectin-FGF15 Axis and Ameliorates Ethanol-Induced Liver Injury in Mice. Scientific Reports, 2016, 6, 34117.	3.3	21
49	Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Science Signaling, 2016, 9, ra21.	3.6	223
50	Does Diacylglycerol Accumulation in Fatty Liver Disease Cause Hepatic Insulin Resistance?. BioMed Research International, 2015, 2015, 1-6.	1.9	39
51	Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice. Journal of Lipid Research, 2015, 56, 848-858.	4.2	24
52	Rhabdomyolysis-Associated Mutations in Human LPIN1 Lead to Loss of Phosphatidic Acid Phosphohydrolase Activity. JIMD Reports, 2015, 23, 113-122.	1.5	28
53	Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochemical Journal, 2015, 466, 443-454.	3.7	188
54	Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling. Cell Metabolism, 2015, 22, 682-694.	16.2	179

#	Article	IF	CITATIONS
55	An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis. PLoS ONE, 2014, 9, e101900.	2.5	22
56	Targeting Hepatic Glycerolipid Synthesis and Turnover to Treat Fatty Liver Disease. Advances in Hepatology, 2014, 2014, 1-14.	1.3	7
57	The Functional Characterization of Long Noncoding RNA <i>SPRY4-IT1</i> in Human Melanoma Cells. Oncotarget, 2014, 5, 8959-8969.	1.8	142
58	Glucose Transporter 8 (GLUT8) Mediates Fructose-induced de Novo Lipogenesis and Macrosteatosis. Journal of Biological Chemistry, 2014, 289, 10989-10998.	3.4	71
59	Head Over Hepatocytes for FGF21. Diabetes, 2014, 63, 4013-4015.	0.6	11
60	Inhibiting Monoacylglycerol Acyltransferase 1 Ameliorates Hepatic Metabolic Abnormalities but Not Inflammation and Injury in Mice. Journal of Biological Chemistry, 2014, 289, 30177-30188.	3.4	40
61	Abrogating Monoacylglycerol Acyltransferase Activity in Liver Improves Glucose Tolerance and Hepatic Insulin Signaling in Obese Mice. Diabetes, 2014, 63, 2284-2296.	0.6	64
62	Lipin 2 Binds Phosphatidic Acid by the Electrostatic Hydrogen Bond Switch Mechanism Independent of Phosphorylation. Journal of Biological Chemistry, 2014, 289, 18055-18066.	3.4	28
63	Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion. Cell Reports, 2014, 7, 2042-2053.	6.4	94
64	PGC-1β and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner. Molecular Metabolism, 2013, 2, 194-204.	6.5	31
65	Glucose Transporter-8 (GLUT8) Mediates Glucose Intolerance and Dyslipidemia in High-Fructose Diet-Fed Male Mice. Molecular Endocrinology, 2013, 27, 1887-1896.	3.7	47
66	Hepatic-specific lipin-1 deficiency exacerbates experimental alcohol-induced steatohepatitis in mice. Hepatology, 2013, 58, 1953-1963.	7.3	60
67	Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 642-647.	7.1	57
68	Effect of Roux-en-Y Gastric Bypass and Laparoscopic Adjustable Gastric Banding on Branched-Chain Amino Acid Metabolism. Diabetes, 2013, 62, 2757-2761.	0.6	108
69	Identification of a Mitochondrial Target of Thiazolidinedione Insulin Sensitizers (mTOT)—Relationship to Newly Identified Mitochondrial Pyruvate Carrier Proteins. PLoS ONE, 2013, 8, e61551.	2.5	141
70	A Sweet New Role for Ubiquitin-Specific Protease 2 in Controlling Hepatic Gluconeogenesis: FIG. 1 Diabetes, 2012, 61, 993-994.	0.6	0
71	Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver. Journal of Lipid Research, 2012, 53, 990-999.	4.2	81
72	Synthesis, radiolabeling and initial in vivo evaluation of [11C]KSM-01 for imaging PPAR-α receptors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6233-6236.	2.2	12

#	Article	IF	CITATIONS
73	Insulin Resistance and Metabolic Derangements in Obese Mice Are Ameliorated by a Novel Peroxisome Proliferator-activated Receptor γ-sparing Thiazolidinedione. Journal of Biological Chemistry, 2012, 287, 23537-23548.	3.4	105
74	IRE1α-XBP1s Induces PDI Expression to Increase MTP Activity for Hepatic VLDL Assembly and Lipid Homeostasis. Cell Metabolism, 2012, 16, 473-486.	16.2	181
75	Complex Interplay between the Lipin 1 and the Hepatocyte Nuclear Factor 4 α (HNF4α) Pathways to Regulate Liver Lipid Metabolism. PLoS ONE, 2012, 7, e51320.	2.5	34
76	Regulation of hepatic lipin-1 by ethanol: Role of AMP-activated protein kinase/sterol regulatory element-binding protein 1 signaling in mice. Hepatology, 2012, 55, 437-446.	7.3	112
77	PPAR/PGC-1 Regulation of Metabolism in Cardiac Disease. , 2012, , 83-111.		1
78	Liver-Specific PGC-1beta Deficiency Leads to Impaired Mitochondrial Function and Lipogenic Response to Fasting-Refeeding. PLoS ONE, 2012, 7, e52645.	2.5	28
79	mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway. Cell, 2011, 146, 408-420.	28.9	1,002
80	FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metabolism, 2011, 13, 729-738.	16.2	331
81	Cardiac lipin 1 expression is regulated by the peroxisome proliferator activated receptor Î ³ coactivator 1α/estrogen related receptor axis. Journal of Molecular and Cellular Cardiology, 2011, 51, 120-128.	1.9	40
82	Dual function lipin proteins and glycerolipid metabolism. Trends in Endocrinology and Metabolism, 2011, 22, 226-233.	7.1	138
83	Chronic Inhibition of Pyruvate Dehydrogenase in Heart Triggers an Adaptive Metabolic Response. Journal of Biological Chemistry, 2011, 286, 11155-11162.	3.4	97
84	Lipin proteins form homo- and hetero-oligomers. Biochemical Journal, 2010, 432, 65-76.	3.7	27
85	Liver regeneration is impaired in lipodystrophic fatty liver dystrophy mice. Hepatology, 2010, 52, 2109-2117.	7.3	63
86	Hepatic Expression of Cell Death–inducing DFFAâ€like Effector C in Obese Subjects Is Reduced by Marked Weight Loss. Obesity, 2010, 18, 417-419.	3.0	35
87	Lipin 1 Represses NFATc4 Transcriptional Activity in Adipocytes To Inhibit Secretion of Inflammatory Factors. Molecular and Cellular Biology, 2010, 30, 3126-3139.	2.3	105
88	Dynamic and differential regulation of proteins that coat lipid droplets in fatty liver dystrophic mice. Journal of Lipid Research, 2010, 51, 554-563.	4.2	49
89	Tauroursodeoxycholic Acid May Improve Liver and Muscle but Not Adipose Tissue Insulin Sensitivity in Obese Men and Women. Diabetes, 2010, 59, 1899-1905.	0.6	343
90	Peroxisome Proliferator-activated Receptor-Î ³ Coactivator-1α (PGC-1α) Stimulates VLDL Assembly through Activation of Cell Death-inducing DFFA-like Effector B (CideB). Journal of Biological Chemistry, 2010, 285, 25996-26004.	3.4	32

#	Article	IF	CITATIONS
91	Short Term Albuterol Administration Induces a Marked Increase in Muscle Protein Synthesis in Older Adults. Medicine and Science in Sports and Exercise, 2010, 42, 75-76.	0.4	8
92	Lipin 2 Is a Liver-enriched Phosphatidate Phosphohydrolase Enzyme That Is Dynamically Regulated by Fasting and Obesity in Mice. Journal of Biological Chemistry, 2009, 284, 6763-6772.	3.4	63
93	In Vivo Metabolic Phenotyping of Myocardial Substrate Metabolism in Rodents. Circulation: Cardiovascular Imaging, 2009, 2, 373-381.	2.6	30
94	FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10853-10858.	7.1	605
95	Dietary Fat and Carbohydrates Differentially Alter Insulin Sensitivity During Caloric Restriction. Gastroenterology, 2009, 136, 1552-1560.	1.3	382
96	Time Course of Alterations in Myocardial Glucose Utilization in the Zucker Diabetic Fatty Rat with Correlation to Gene Expression of Glucose Transporters: A Small-Animal PET Investigation. Journal of Nuclear Medicine, 2008, 49, 1320-1327.	5.0	62
97	The PPAR <mml:math e1"="" xmlns:mml="http://www.w3.org/1998/Math/Math/Math/ML
id="><mml:mi>α</mml:mi></mml:math> -PGC-1 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E2"><mml:mi>α</mml:mi>Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium. PPAR Research, 2008, 2008,</mml:math 	2.4	66
98	Alterations in Hepatic Metabolism in <i>fld</i> Mice Reveal a Role for Lipin 1 in Regulating VLDL-Triacylglyceride Secretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1738-1744.	2.4	80
99	Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. Journal of Applied Physiology, 2008, 105, 473-478.	2.5	208
100	CD36 Deficiency Rescues Lipotoxic Cardiomyopathy. Circulation Research, 2007, 100, 1208-1217.	4.5	214
101	Hepatic Lipin 1β Expression Is Diminished in Insulin-Resistant Obese Subjects and Is Reactivated by Marked Weight Loss. Diabetes, 2007, 56, 2395-2399.	0.6	68
102	Insulin-Resistant Heart Exhibits a Mitochondrial Biogenic Response Driven by the Peroxisome Proliferator-Activated Receptor-α/PGC-1α Gene Regulatory Pathway. Circulation, 2007, 115, 909-917.	1.6	199
103	The PPAR regulatory system in cardiac physiology and disease. Cardiovascular Research, 2007, 73, 269-277.	3.8	185
104	Peroxisome Proliferator–Activated Receptor γ Coactivator-1 (PGC-1) Regulatory Cascade in Cardiac Physiology and Disease. Circulation, 2007, 115, 2540-2548.	1.6	242
105	Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metabolism, 2006, 4, 199-210.	16.2	481
106	ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metabolism, 2006, 4, 377-389.	16.2	222
107	Synthesis and evaluation of a bromine-76-labeled PPARÎ ³ antagonist 2-bromo-5-nitro-N-phenylbenzamide. Nuclear Medicine and Biology, 2006, 33, 847-854.	0.6	17
108	Chronic activation of PPARα is detrimental to cardiac recovery after ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H87-H95.	3.2	106

#	Article	IF	CITATIONS
109	OXPAT/PAT-1 Is a PPAR-Induced Lipid Droplet Protein That Promotes Fatty Acid Utilization. Diabetes, 2006, 55, 3418-3428.	0.6	276
110	Diminished Hepatic Gluconeogenesis via Defects in Tricarboxylic Acid Cycle Flux in Peroxisome Proliferator-activated Receptor γ Coactivator-1α (PGC-1α)-deficient Mice*. Journal of Biological Chemistry, 2006, 281, 19000-19008.	3.4	99
111	Effects of PPARα on cardiac glucose metabolism: a transcriptional equivalent of the glucose-fatty acid cycle?. Expert Review of Cardiovascular Therapy, 2006, 4, 161-171.	1.5	10
112	PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. Journal of Clinical Investigation, 2006, 116, 615-622.	8.2	1,193
113	Cardiac-Specific Overexpression of Peroxisome Proliferator–Activated Receptor-α Causes Insulin Resistance in Heart and Liver. Diabetes, 2005, 54, 2514-2524.	0.6	113
114	A potential link between muscle peroxisome proliferator- activated receptor-α signaling and obesity-related diabetes. Cell Metabolism, 2005, 1, 133-144.	16.2	241
115	Mouse models of mitochondrial dysfunction and heart failure. Journal of Molecular and Cellular Cardiology, 2005, 38, 81-91.	1.9	87
116	PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis. PLoS Biology, 2005, 3, e101.	5.6	817
117	C-Protein Signaling Participates in the Development of Diabetic Cardiomyopathy. Diabetes, 2004, 53, 3082-3090.	0.6	37
118	The role of the peroxisome proliferator-activated receptor alpha pathway in pathological remodeling of the diabetic heart. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7, 391-396.	2.5	36
119	Dexamethasone induction of hypertension and diabetes is PPAR-α dependent in LDL receptor–null mice. Nature Medicine, 2003, 9, 1069-1075.	30.7	187
120	A critical role for PPARÂ-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1226-1231.	7.1	478
121	Peroxisome Proliferator-activated Receptor α (PPARα) Signaling in the Gene Regulatory Control of Energy Metabolism in the Normal and Diseased Heart. Journal of Molecular and Cellular Cardiology, 2002, 34, 1249-1257.	1.9	139
122	Anti-inflammatory agents inhibit the induction of leptin by tumor necrosis factor-α. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1429-R1435.	1.8	22
123	The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. Journal of Clinical Investigation, 2002, 109, 121-130.	8.2	722
124	The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. Journal of Clinical Investigation, 2002, 109, 121-130.	8.2	458
125	Tumor necrosis factor-? regulates secretion of the adipocyte-derived cytokine, leptin. Microscopy Research and Technique, 2000, 50, 209-215.	2.2	42
126	Tumor necrosis factor (TNF)-α induces leptin production through the p55 TNF receptor. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R537-R543.	1.8	64

#	Article	IF	CITATIONS
127	Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-κB. Molecular Brain Research, 2000, 77, 138-147.	2.3	115
128	Intracerebroventricular injection of lipopolysaccharide increases plasma leptin levels. NeuroReport, 1999, 10, 153-156.	1.2	18
129	In Vivo and in Vitro Evidence for the Involvement of Tumor Necrosis Factor-α in the Induction of Leptin by Lipopolysaccharide*. Endocrinology, 1998, 139, 2278-2283.	2.8	159
130	Anorexia, weight loss and increased plasma interleukin-6 caused by chronic intracerebroventricular infusion of interleukin-1 l² in the rat. Brain Research, 1997, 761, 333-337.	2.2	36
131	Metabolic Mechanisms Connecting Alzheimer's and Parkinson's Diseases: Potential Avenues for Novel Therapeutic Approaches. Frontiers in Molecular Biosciences, 0, 9, .	3.5	4