Robb Krumlauf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1965645/publications.pdf

Version: 2024-02-01

185 papers 26,047 citations

79 h-index

6592

158 g-index

209 all docs 209 docs citations

times ranked

209

14160 citing authors

#	Article	IF	CITATIONS
1	Homeobox genes and axial patterning. Cell, 1992, 68, 283-302.	13.5	2,600
2	Hox genes in vertebrate development. Cell, 1994, 78, 191-201.	13.5	1,939
3	Patterning the Vertebrate Neuraxis. Science, 1996, 274, 1109-1115.	6.0	1,091
4	The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell, 1989, 57, 367-378.	13.5	1,025
5	Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 2013, 45, 415-421.	9.4	588
6	Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature, 1989, 341, 405-409.	13.7	565
7	A distinct Hox code for the branchial region of the vertebrate head. Nature, 1991, 353, 861-864.	13.7	509
8	Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell, 1995, 81, 1031-1042.	13.5	479
9	Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature, 1992, 360, 737-741.	13.7	453
10	A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature, 1994, 370, 567-571.	13.7	443
11	Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature, 1996, 384, 630-634.	13.7	395
12	Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nature Genetics, 2000, 24, 438-441.	9.4	362
13	Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature, 1991, 350, 243-246.	13.7	354
14	Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell, 1993, 73, 279-294.	13.5	336
15	Diversity of alpha-fetoprotein gene expression in mice is generated by a combination of separate enhancer elements. Science, 1987, 235, 53-58.	6.0	335
16	Bone Density Ligand, Sclerostin, Directly Interacts With LRP5 but Not LRP5G171V to Modulate Wnt Activity. Journal of Bone and Mineral Research, 2006, 21, 1738-1749.	3.1	315
17	Patterning the cranial neural crest: Hinbrain segmentation and hox gene plasticity. Nature Reviews Neuroscience, 2000, 1, 116-124.	4.9	310
18	Global Analysis of H3K4 Methylation Defines MLL Family Member Targets and Points to a Role for MLL1-Mediated H3K4 Methylation in the Regulation of Transcriptional Initiation by RNA Polymerase II. Molecular and Cellular Biology, 2009, 29, 6074-6085.	1.1	308

#	Article	IF	CITATIONS
19	The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell, 1993, 72, 183-196.	13.5	303
20	â€~Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nature Cell Biology, 1999, 1, E203-E207.	4.6	296
21	Wise, a context-dependent activator and inhibitor of Wnt signalling. Development (Cambridge), 2003, 130, 4295-4305.	1.2	294
22	Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression Genes and Development, 1991, 5, 2048-2059.	2.7	282
23	Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science, 1994, 265, 1728-1732.	6.0	274
24	<i>Hox</i> Genes and Segmentation of the Hindbrain and Axial Skeleton. Annual Review of Cell and Developmental Biology, 2009, 25, 431-456.	4.0	267
25	Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the <i>HoxB </i> genes in two distinct groups. Development (Cambridge), 2002, 129, 5103-5115.	1.2	266
26	The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nature Genetics, 2018, 50, 270-277.	9.4	262
27	Initiation of Rhombomeric Hoxb4 Expression Requires Induction by Somites and a Retinoid Pathway. Neuron, 1998, 21, 39-51.	3.8	260
28	Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1684-1688.	3.3	255
29	Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nature Cell Biology, 2000, 2, 96-102.	4.6	243
30	Hox genes, neural crest cells and branchial arch patterning. Current Opinion in Cell Biology, 2001, 13, 698-705.	2.6	240
31	Retinoids and Hox genes. FASEB Journal, 1996, 10, 969-978.	0.2	235
32	Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns Genes and Development, 1997, 11, 900-913.	2.7	234
33	Hox genes and pattern formation in the branchial region of the vertebrate head. Trends in Genetics, 1993, 9, 106-112.	2.9	227
34	PARALOGOUSHOXGENES:Function and Regulation. Annual Review of Genetics, 1996, 30, 529-556.	3.2	210
35	Hox9 genes and vertebrate limb specification. Nature, 1997, 387, 97-101.	13.7	199
36	Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development (Cambridge), 2010, 137, 3221-3231.	1.2	197

3

#	Article	IF	Citations
37	Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes and Development, 2003, 17, 729-737.	2.7	196
38	Reprogramming Hox Expression in the Vertebrate Hindbrain: Influence of Paraxial Mesoderm and Rhombomere Transposition. Neuron, 1996, 16, 487-500.	3.8	189
39	Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1 Genes and Development, 1997, 11, 1885-1895.	2.7	188
40	Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development (Cambridge), 2004, 131, 2137-2147.	1.2	181
41	Evolution of the vertebrateHox homeobox genes. BioEssays, 1992, 14, 245-252.	1.2	180
42	Retinoid signalling and hindbrain patterning. Current Opinion in Genetics and Development, 2000, 10, 380-386.	1.5	180
43	Role of the Isthmus and FGFs in Resolving the Paradox of Neural Crest Plasticity and Prepatterning. Science, 2002, 295, 1288-1291.	6.0	173
44	Hox homeobox genes and regionalisation of the nervous system. Journal of Neurobiology, 1993, 24, 1328-1340.	3.7	172
45	Hoxa2 and Hoxb2 Control Dorsoventral Patterns of Neuronal Development in the Rostral Hindbrain. Neuron, 1999, 22, 677-691.	3.8	167
46	Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature, 2000, 408, 854-857.	13.7	167
47	Deciphering the Hox code: Clues to patterning branchial regions of the head. Cell, 1991, 66, 1075-1078.	13.5	166
48	Hox Genes and Regionalization of the Nervous System. Annual Review of Neuroscience, 1994, 17, 109-132.	5.0	166
49	Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nature Cell Biology, 2000, 2, 103-109.	4.6	162
50	Cloning and characterisation of the abundant cytoplasmic 7S RNA from mouse cells. Nucleic Acids Research, 1982, 10, 4259-4277.	6.5	161
51	Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes and Development, 2011, 25, 1486-1498.	2.7	161
52	Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature, 1992, 356, 157-159.	13.7	156
53	Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes. Nature Genetics, 1997, 16, 79-83.	9.4	148
54	Characterization of a murine homeo box gene, Hox-2.6, related to the Drosophila Deformed gene Genes and Development, 1988, 2, 1424-1438.	2.7	146

#	Article	IF	CITATIONS
55	Hox Codes and Positional Specification in Vertebrate Embryonic Axes. Annual Review of Cell Biology, 1992, 8, 227-256.	26.0	146
56	Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO Journal, 1998, 17, 1788-1798.	3.5	145
57	Segmental regulation of Hoxb-3 by kreisler. Nature, 1997, 387, 191-195.	13.7	142
58	Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development (Cambridge), 2007, 134, 3065-3075.	1.2	142
59	Construction and characterization of genomic libraries from specific human chromosomes Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 2971-2975.	3.3	139
60	Chapter 8 Hox Genes and Segmentation of the Vertebrate Hindbrain. Current Topics in Developmental Biology, 2009, 88, 103-137.	1.0	133
61	Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development (Cambridge), 2002, 129, 433-442.	1.2	128
62	Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7666-7670.	3.3	127
63	Identification of Sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. Current Biology, 1999, 9, 97-S1.	1.8	125
64	Molecular approaches to the segmentation of the hindbrain. Trends in Neurosciences, 1990, 13, 335-339.	4.2	122
65	In vivo mechanical loading rapidly activates \hat{l}^2 -catenin signaling in osteocytes through a prostaglandin mediated mechanism. Bone, 2015, 76, 58-66.	1.4	121
66	Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2249-2253.	3.3	118
67	The Wnt/β-Catenin Pathway Posteriorizes Neural Tissue in Xenopus by an Indirect Mechanism Requiring FGF Signalling. Developmental Biology, 2001, 239, 148-160.	0.9	117
68	The expression of murine Hox-2 genes id dependent on the differenation pathway and displays a collinear sensitivity to retinoic acid in F9 cels andXenopusembroys. Nucleic Acids Research, 1991, 19, 5497-5506.	6.5	115
69	The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9339-9345.	3.3	113
70	Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development (Cambridge), 2003, 130, 5663-5679.	1.2	113
71	Synergy between < i>Hoxal < /i> and < i>Hoxbl < /i> : the relationship between arch patterning and the generation of cranial neural crest. Development (Cambridge), 2001, 128, 3017-3027.	1.2	97
72	An impulse to the brain—using in vivo electroporation. Nature Neuroscience, 2001, 4, 1156-1158.	7.1	95

#	Article	IF	CITATIONS
73	Poised RNA Polymerase II Changes over Developmental Time and Prepares Genes for Future Expression. Cell Reports, 2012, 2, 1670-1683.	2.9	95
74	The Role of kreisler in Segmentation during Hindbrain Development. Developmental Biology, 1999, 211, 220-237.	0.9	94
75	Independent regulation of initiation and maintenance phases of <i>Hoxa3 </i> expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development (Cambridge), 2001, 128, 3595-3607.	1.2	89
76	A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature, 2014, 514, 490-493.	13.7	88
77	Characterization of the sequence complexity and organization of the Neurospora crassa genome. Biochemistry, 1979, 18, 3705-3713.	1.2	86
78	Hoxb1 Enhancer and Control of Rhombomere 4 Expression: Complex Interplay between PREP1-PBX1-HOXB1 Binding Sites. Molecular and Cellular Biology, 2005, 25, 8541-8552.	1.1	83
79	Mechanisms of <i>Hox</i> gene colinearity: transposition of the anterior <i>Hoxb1</i> gene into the posterior <i>HoxD</i> complex. Genes and Development, 2000, 14, 198-211.	2.7	83
80	Homeobox genes and models for patterning the hindbrain and branchial arches. Development (Cambridge), 1991, 113, 187-196.	1.2	82
81	Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development (Cambridge), 2002, 129, 5103-15.	1.2	82
82	Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development (Cambridge), 2013, 140, 583-593.	1.2	81
83	Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Developmental Biology, 2007, 302, 646-660.	0.9	73
84	A G \hat{a}^{\dagger} ' A substitution in an HNF I binding site in the human \hat{l}_{\pm} -fetoprotein gene is associated with hereditary persistence of \hat{l}_{\pm} -fetoprotein (HPAFP). Human Molecular Genetics, 1993, 2, 379-384.	1.4	70
85	A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20077-20082.	3.3	67
86	Differential expression of \hat{l}_{\pm} -fetoprotein genes on the inactive X chromosome in extraembryonic and somatic tissues of a transgenic mouse line. Nature, 1986, 319, 224-226.	13.7	65
87	Direct crossregulation between retinoic acid receptor \hat{l}^2 and Hox genes during hindbrain segmentation. Development (Cambridge), 2005, 132, 503-513.	1.2	65
88	Use of a chromosome 21 cloned DNA probe for the analysis of non-disjunction in Down syndrome. Human Genetics, 1984, 66, 54-56.	1.8	64
89	Restoration of Normal Hox Code and Branchial Arch Morphogenesis after Extensive Deletion of Hindbrain Neural Crest. Developmental Biology, 1995, 168, 584-597.	0.9	64
90	Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine <i>Hox</i> clusters in ES cells. Genome Research, 2015, 25, 1229-1243.	2.4	64

#	Article	IF	CITATIONS
91	Krox20 and kreisler co-operate in the transcriptional control of segmental expression ofHoxb3in the developing hindbrain. EMBO Journal, 2002, 21, 365-376.	3.5	62
92	Duplications of hox gene clusters and the emergence of vertebrates. Developmental Biology, 2013, 378, 194-199.	0.9	62
93	The Recruitment of SOX/OCT Complexes and the Differential Activity of HOXA1 and HOXB1 Modulate the Hoxb1Auto-regulatory Enhancer Function. Journal of Biological Chemistry, 2001, 276, 20506-20515.	1.6	61
94	The vertebrate <i>Hox</i> gene regulatory network for hindbrain segmentation: Evolution and diversification. BioEssays, 2016, 38, 526-538.	1.2	61
95	Isolation and characterization of the $5\hat{a} \in \mathbb{Z}^2$ flanking region of the mouse C-harvey-ras gene. Molecular Carcinogenesis, 1988, 1, 161-170.	1.3	59
96	Mouse Hox genetic functions. Current Opinion in Genetics and Development, 1993, 3, 621-625.	1.5	55
97	Comparative analysis of chicken Hoxb-4 regulation in transgenic mice. Mechanisms of Development, 1995, 53, 47-59.	1.7	54
98	Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5838-5845.	3.3	54
99	Modulating Wnt Signaling Rescues Palate Morphogenesis in <i>Pax9</i> Mutant Mice. Journal of Dental Research, 2017, 96, 1273-1281.	2.5	54
100	Elements both $5\hat{a} \in \mathbb{Z}^2$ and $3\hat{a} \in \mathbb{Z}^2$ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mechanisms of Development, 1997, 67, 49-58.	1.7	53
101	Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis, 2004, 39, 115-121.	0.8	53
102	Conservation and Diversity in the cis-Regulatory Networks That Integrate Information Controlling Expression of Hoxa2 in Hindbrain and Cranial Neural Crest Cells in Vertebrates. Developmental Biology, 2002, 246, 45-56.	0.9	52
103	Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development (Cambridge), 2011, 138, 4063-4073.	1.2	52
104	Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development. Developmental Biology, 2013, 383, 158-173.	0.9	52
105	Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Developmental Biology, 2018, 444, S67-S78.	0.9	52
106	A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nature Communications, 2019, 10, 3857.	5.8	51
107	Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5419-5424.	3.3	50
108	A yeast artificial chromosome containing the mouse homeobox cluster Hox-2 Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4751-4755.	3.3	48

#	Article	IF	Citations
109	Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Developmental Biology, 2014, 388, 134-144.	0.9	48
110	<i>HOX</i> s and lincRNAs: Two sides of the same coin. Science Advances, 2016, 2, e1501402.	4.7	47
111	Segmental arithmetic: summing up the <i>Hox</i> gene regulatory network for hindbrain development in chordates. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e286.	5.9	47
112	Transposon tools for recombinant DNA manipulation: characterization of transcriptional regulators from yeast, Xenopus, and mouse Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2801-2806.	3.3	45
113	<i>Hox</i> genes: Downstream "effectors―of retinoic acid signaling in vertebrate embryogenesis. Genesis, 2019, 57, e23306.	0.8	45
114	Hox genes, clusters and collinearity. International Journal of Developmental Biology, 2018, 62, 659-663.	0.3	44
115	Multiple modes of Lrp4 function in modulation of Wnt/ \hat{l}^2 -catenin signaling during tooth development. Development (Cambridge), 2017, 144, 2824-2836.	1.2	43
116	A Hox gene regulatory network for hindbrain segmentation. Current Topics in Developmental Biology, 2020, 139, 169-203.	1.0	42
117	Bone Formation: The Nuclear Matrix Reloaded. Cell, 2006, 125, 840-842.	13.5	41
118	Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Developmental Biology, 2017, 432, 151-164.	0.9	41
119	Segmentation and patterning of the vertebrate hindbrain. Development (Cambridge), 2021, 148, .	1.2	41
120	Dorsal patterning defects in the hindbrain, roof plate and skeleton in the dreher (drJ) mouse mutant. Mechanisms of Development, 2000, 94, 147-156.	1.7	40
121	Regulation of Hoxb2 by APL-associated PLZF protein. Oncogene, 2003, 22, 3685-3697.	2.6	39
122	A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates. Nature Communications, 2019, 10, 1189.	5.8	38
123	DEVELOPMENT: Riding the Crest of the Wnt Signaling Wave. Science, 2002, 297, 781-783.	6.0	37
124	Regulatory Analysis of the Mouse Hoxb3 Gene: Multiple Elements Work in Concert to Direct Temporal and Spatial Patterns of Expression. Developmental Biology, 2001, 232, 176-190.	0.9	36
125	Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development (Cambridge), 2002, 129, 433-42.	1.2	36
126	HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets. Genome Research, 2017, 27, 1501-1512.	2.4	35

#	Article	IF	Citations
127	The origin of the neural crest. Journal of Comparative Neurology, 1942, 76, 191-215.	0.9	33
128	Differences in Krox20-Dependent Regulation of Hoxa2 and Hoxb2 during Hindbrain Development. Developmental Biology, 2001, 233, 468-481.	0.9	33
129	Retinoid-Sensitive Epigenetic Regulation of the Hoxb Cluster Maintains Normal Hematopoiesis and Inhibits Leukemogenesis. Cell Stem Cell, 2018, 22, 740-754.e7.	5.2	33
130	Hox Genes and the Hindbrain. Current Topics in Developmental Biology, 2016, 116, 581-596.	1.0	29
131	Analysis of gene expression by Northern blot. Molecular Biotechnology, 1994, 2, 227-242.	1.3	26
132	Improved development of the chick embryo using roller-tube culture. Trends in Genetics, 1995, 11, 259-260.	2.9	25
133	Evolution of anterior Hox regulatory elements among chordates. BMC Evolutionary Biology, 2011, 11, 330.	3.2	25
134	Regulatory analysis of the mouseFgf3 gene: Control of embryonic expression patterns and dependence upon sonic hedgehog (Shh) signalling. Developmental Dynamics, 2004, 230, 44-56.	0.8	24
135	Analysis of mouse Cdh6 gene regulation by transgenesis of modified bacterial artificial chromosomes. Developmental Biology, 2008, 315, 506-520.	0.9	24
136	Dynamic expression patterns of the pudgy/spondylocostal dysostosis gene Dll3 in the developing nervous system. Mechanisms of Development, 2001, 100, 141-144.	1.7	22
137	Combined function of HoxA and HoxB clusters in neural crest cells. Developmental Biology, 2013, 382, 293-301.	0.9	21
138	An atlas of anterior hox gene expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates. Developmental Biology, 2019, 453, 19-33.	0.9	21
139	Genetic Interactions During Hindbrain Segmentation in the Mouse Embryo. Results and Problems in Cell Differentiation, 2000, 30, 51-89.	0.2	20
140	Requirement for downregulation of kreisler during late patterning of the hindbrain. Development (Cambridge), 2002, 129, 1477-1485.	1.2	20
141	Wise Regulates Bone Deposition through Genetic Interactions with Lrp5. PLoS ONE, 2014, 9, e96257.	1.1	19
142	IRF6 and SPRY4 Signaling Interact in Periderm Development. Journal of Dental Research, 2017, 96, 1306-1313.	2.5	18
143	Transcription of repeated sequences of the mouse B1 family in friend erythroleukaemic cells. Journal of Molecular Biology, 1982, 160, 163-179.	2.0	17
144	FGF signaling refines Wnt gradients to regulate patterning of taste papillae. Development (Cambridge), 2017, 144, 2212-2221.	1.2	17

#	Article	IF	Citations
145	Transcriptional Regulation and Implications for Controlling Hox Gene Expression. Journal of Developmental Biology, 2022, 10, 4.	0.9	17
146	Shh Plays an Inhibitory Role in Cusp Patterning by Regulation of Sostdc1. Journal of Dental Research, 2019, 98, 98-106.	2.5	16
147	A six-amino-acid motif is a major determinant in functional evolution of HOX1 proteins. Genes and Development, 2020, 34, 1680-1696.	2.7	16
148	Non-cell-autonomous effects of Ret deletion in early enteric neurogenesis. Development (Cambridge), 2008, 135, 3007-3011.	1.2	15
149	FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biology, 2020, 18, 87.	1.7	13
150	Expression of Hox Genes in the Nervous System of Vertebrates. , 2007, , 14-41.		13
151	A computer program for the calculation of sedimentation coefficients and molecular weights of nucleic acids. Analytical Biochemistry, 1981, 115, 97-101.	1.1	10
152	Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution. Developmental Biology, 2016, 409, 530-542.	0.9	10
153	Hox genes coming to a head. Current Biology, 1991, 1, 304-306.	1.8	9
154	Northern Blot Analysis. , 1996, 58, 113-128.		9
155	Genome-Wide Binding Analyses of HOXB1 Revealed a Novel DNA Binding Motif Associated with Gene Repression. Journal of Developmental Biology, 2021, 9, 6.	0.9	9
156	Raising the roof. Nature, 2000, 403, 720-721.	13.7	8
157	Diversification and Functional Evolution of HOX Proteins. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	8
158	BAC Modification through Serial or Simultaneous Use of CRE/Lox Technology. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	7
159	Requirement for downregulation of kreisler during late patterning of the hindbrain. Development (Cambridge), 2002, 129, 1477-85.	1.2	7
160	Homeobox cooperativity. Trends in Genetics, 1992, 8, 297-300.	2.9	6
161	Transforming the Hox code. Current Biology, 1992, 2, 641-643.	1.8	6
162	Retinoic Acid Signaling in Vertebrate Hindbrain Segmentation: Evolution and Diversification. Diversity, 2021, 13, 398.	0.7	6

#	Article	IF	CITATIONS
163	Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Developmental Biology, 2021, 479, 61-76.	0.9	6
164	Neural Crest Cells. , 2004, , 219-232.		5
165	Hindbrain Development and Evolution: Past, Present, and Future. Brain, Behavior and Evolution, 2005, 66, 219-221.	0.9	4
166	Downregulation of FGF Signaling by <i>Spry4</i> Overexpression Leads to Shape Impairment, Enamel Irregularities, and Delayed Signaling Center Formation in the Mouse Molar. JBMR Plus, 2019, 3, e10205.	1.3	4
167	Hox genes: a molecular code for patterning regional diversity in the nervous system and branchial structures. Restorative Neurology and Neuroscience, 1993, 5, 10-12.	0.4	3
168	Interâ€rhombomeric interactions reveal roles for fibroblast growth factors signaling in segmental regulation of <i>EphA4</i> expression. Developmental Dynamics, 2020, 249, 354-368.	0.8	3
169	Analysis of the cell-cycle expression of a mouse H4 histone gene by centrifugal elutriation. Biochemical Society Transactions, 1981, 9, 593-594.	1.6	2
170	The Hox gene family in transgenic mice. Current Opinion in Biotechnology, 1991, 2, 796-801.	3.3	1
171	Building from the bottom up. Nature Cell Biology, 2001, 3, E138-E139.	4.6	1
172	Cdx1 is a required activator of Hox expression during gastrulation. Developmental Biology, 2007, 306, 399.	0.9	1
173	Hox Genes and the Development of the Branchial Region. , 1992, , 49-73.		1
174	Neural Crest Cells. , 2004, , 205-218.		1
175	Spring Forward and Fall Back. Developmental Cell, 2002, 3, 605-606.	3.1	0
176	Special Introduction. Developmental Biology, 2010, 339, 224.	0.9	0
177	Electroporation of Living Embryos. , 2006, , 35-42.		0
178	Insights from transcriptional profiling the mouse hindbrain: Novel feedback between retinoids and Hox genes. FASEB Journal, 2013, 27, 966.1.	0.2	0
179	Hox Complex Analysis Through BAC Recombineering. Methods in Molecular Biology, 2014, 1196, 59-87.	0.4	0
180	The Role of Hox Genes in Axis Specification. , 1993, , 161-181.		O

#	Article	IF	CITATIONS
181	Expression of Hox-2 Genes and Their Relationship to Regional Diversity in the Vertebrate Head. , 1993, , 211-228.		O
182	Genetic Mechanisms Responsible for Pattern Formation in the Vertebrate Hindbrain: Regulation of Hoxb-1., 1995,, 17-28.		0
183	A Conserved Cis-Regulatory Retinoic Acid Responsive Element Is Essential for Maintenance of Primitive Hematopoietic Stem Cells through Regulation of Hoxb Cluster. Blood, 2015, 126, 2377-2377.	0.6	0
184	The Methylation-Sensitive Enhancer Derare Maintains Hematopoietic Stem Cells through Regulation of Hoxb Cluster. Blood, 2016, 128, 725-725.	0.6	0
185	Hox Regulation of Neural Crest Cells during Craniofacial Development. FASEB Journal, 2018, 32, 778.2.	0.2	0