
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/19655/publications.pdf Version: 2024-02-01



CHANCHIN NIE

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35, 2383-2390.                                                   | 5.7  | 1,352     |
| 2  | A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature<br>Biotechnology, 2018, 36, 258-264.                                                           | 9.4  | 1,066     |
| 3  | Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.                                                           | 7.6  | 627       |
| 4  | Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011, 32, 8281-8290.                             | 5.7  | 539       |
| 5  | Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles.<br>Biomaterials, 2011, 32, 1611-1618.                                                                    | 5.7  | 397       |
| 6  | Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International, 2006, 48, 263-274.                             | 1.9  | 390       |
| 7  | Safety of Nanoparticles in Medicine. Current Drug Targets, 2015, 16, 1671-1681.                                                                                                                     | 1.0  | 384       |
| 8  | Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows. ACS<br>Nano, 2017, 11, 6968-6976.                                                                  | 7.3  | 369       |
| 9  | Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.                                                                                               | 4.2  | 336       |
| 10 | A DNA nanodevice-based vaccine for cancer immunotherapy. Nature Materials, 2021, 20, 421-430.                                                                                                       | 13.3 | 320       |
| 11 | Biomimetic Metal–Organic Framework Nanoparticles for Cooperative Combination of<br>Antiangiogenesis and Photodynamic Therapy for Enhanced Efficacy. Advanced Materials, 2019, 31,<br>e1808200.      | 11.1 | 307       |
| 12 | Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney<br>Targeting and Biomedical Imaging. Journal of the American Chemical Society, 2011, 133, 8617-8624. | 6.6  | 258       |
| 13 | Facetâ€Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light.<br>Angewandte Chemie - International Edition, 2012, 51, 178-182.                                      | 7.2  | 258       |
| 14 | Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer<br>Immunotherapy. Nano Letters, 2018, 18, 3250-3258.                                                  | 4.5  | 255       |
| 15 | Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism.<br>Angewandte Chemie - International Edition, 2018, 57, 2377-2382.                           | 7.2  | 249       |
| 16 | Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nature Communications, 2018, 9, 3390.                                        | 5.8  | 249       |
| 17 | Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell<br>Discovery, 2016, 2, 16015.                                                                         | 3.1  | 239       |
| 18 | Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials, 2021, 6,<br>766-783.                                                                                       | 23.3 | 224       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS<br>Nano, 2014, 8, 11529-11542.                                                                                    | 7.3  | 220       |
| 20 | Unraveling Stressâ€Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism.<br>Advanced Materials, 2012, 24, 5391-5397.                                                                    | 11.1 | 213       |
| 21 | Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots. Angewandte<br>Chemie - International Edition, 2011, 50, 5860-5864.                                                         | 7.2  | 210       |
| 22 | Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 2015, 46, 13-25.                                  | 5.7  | 208       |
| 23 | Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials, 2016, 102, 187-197.                                                        | 5.7  | 208       |
| 24 | Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nature Communications, 2021, 12, 2041.                  | 5.8  | 207       |
| 25 | Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses.<br>Blood, 2011, 118, 1912-1922.                                                                             | 0.6  | 185       |
| 26 | Designing Liposomes To Suppress Extracellular Matrix Expression To Enhance Drug Penetration and Pancreatic Tumor Therapy. ACS Nano, 2017, 11, 8668-8678.                                                      | 7.3  | 175       |
| 27 | Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosensors and<br>Bioelectronics, 2015, 64, 165-170.                                                                      | 5.3  | 173       |
| 28 | Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood, 2005, 105, 2161-2167.                                                                  | 0.6  | 161       |
| 29 | Peptide Assembly Integration of Fibroblastâ€Targeting and Cellâ€Penetration Features for Enhanced<br>Antitumor Drug Delivery. Advanced Materials, 2015, 27, 1865-1873.                                        | 11.1 | 158       |
| 30 | Using Functional Nanomaterials to Target and Regulate the Tumor Microenvironment: Diagnostic and<br>Therapeutic Applications. Advanced Materials, 2013, 25, 3508-3525.                                        | 11.1 | 154       |
| 31 | Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via<br>Cancerâ€Associated Fibroblast Activation. Angewandte Chemie - International Edition, 2016, 55, 1050-1055. | 7.2  | 153       |
| 32 | Engineering Biomimetic Platesomes for pHâ€Responsive Drug Delivery and Enhanced Antitumor Activity.<br>Advanced Materials, 2019, 31, e1900795.                                                                | 11.1 | 148       |
| 33 | Targeted Brain Delivery of Rabies Virus Glycoprotein 29-Modified Deferoxamine-Loaded Nanoparticles<br>Reverses Functional Deficits in Parkinsonian Mice. ACS Nano, 2018, 12, 4123-4139.                       | 7.3  | 145       |
| 34 | Smart Nanotherapeutic Targeting of Tumor Vasculature. Accounts of Chemical Research, 2019, 52, 2703-2712.                                                                                                     | 7.6  | 137       |
| 35 | Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by<br>Gold Nanoshell@Mesoporous Silica Nanorod. ACS Nano, 2017, 11, 8103-8113.                                 | 7.3  | 135       |
| 36 | Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nature Biomedical Engineering, 2017, 1, 667-679.                   | 11.6 | 132       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Bacterial Outer Membrane Vesicles Presenting Programmed Death 1 for Improved Cancer<br>Immunotherapy <i>via</i> Immune Activation and Checkpoint Inhibition. ACS Nano, 2020, 14, 16698-16711.                 | 7.3  | 132       |
| 38 | iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials, 2013, 34, 3523-3533.                                                                                                    | 5.7  | 129       |
| 39 | Enhancing photocatalytic activity of one-dimensional KNbO3 nanowires by Au nanoparticles under ultraviolet and visible-light. Nanoscale, 2011, 3, 5161.                                                       | 2.8  | 127       |
| 40 | "Triple-Punch―Strategy for Triple Negative Breast Cancer Therapy with Minimized Drug Dosage and<br>Improved Antitumor Efficacy. ACS Nano, 2015, 9, 1367-1378.                                                 | 7.3  | 125       |
| 41 | Distinct Effects of Tea Catechins on 6-Hydroxydopamine-Induced Apoptosis in PC12 Cells. Archives of Biochemistry and Biophysics, 2002, 397, 84-90.                                                            | 1.4  | 124       |
| 42 | Engineered Nanoplatelets for Targeted Delivery of Plasminogen Activators to Reverse Thrombus in<br>Multiple Mouse Thrombosis Models. Advanced Materials, 2020, 32, e1905145.                                  | 11.1 | 121       |
| 43 | An MMP-2 Responsive Liposome Integrating Antifibrosis and Chemotherapeutic Drugs for Enhanced<br>Drug Perfusion and Efficacy in Pancreatic Cancer. ACS Applied Materials & Interfaces, 2016, 8,<br>3438-3445. | 4.0  | 119       |
| 44 | Protective effects of green tea polyphenols and their major component, (–)-epigallocatechin-3-gallate<br>(EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Report, 2002, 7, 171-177.        | 1.4  | 117       |
| 45 | <i>In Situ</i> Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide<br>Hydrogel for Durable Cancer Immunotherapy. Nano Letters, 2021, 21, 2224-2231.                             | 4.5  | 116       |
| 46 | Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem<br>Cell Membrane for Tumor-Targeted Therapy. ACS Applied Materials & Interfaces, 2018, 10,<br>22963-22973.  | 4.0  | 110       |
| 47 | Applications of nanomaterials as vaccine adjuvants. Human Vaccines and Immunotherapeutics, 2014, 10, 2761-2774.                                                                                               | 1.4  | 109       |
| 48 | Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Science Translational Medicine, 2021, 13, .                                                     | 5.8  | 109       |
| 49 | Inâ€Situ Selfâ€Assembled Nanofibers Precisely Target Cancerâ€Associated Fibroblasts for Improved Tumor<br>Imaging. Angewandte Chemie - International Edition, 2019, 58, 15287-15294.                          | 7.2  | 107       |
| 50 | Reshaping Prostate Tumor Microenvironment To Suppress Metastasis <i>via</i> Cancer-Associated<br>Fibroblast Inactivation with Peptide-Assembly-Based Nanosystem. ACS Nano, 2019, 13, 12357-12371.             | 7.3  | 107       |
| 51 | Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore Cisplatin Chemosensitivity. ACS Nano, 2019, 13, 13445-13455.                                                               | 7.3  | 106       |
| 52 | Lysosomal Proteolysis Is the Primary Degradation Pathway for Cytosolic Ferritin and Cytosolic<br>Ferritin Degradation Is Necessary for Iron Exit. Antioxidants and Redox Signaling, 2010, 13, 999-1009.       | 2.5  | 105       |
| 53 | Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Scientific Reports, 2012, 2, 847.                                                         | 1.6  | 104       |
| 54 | Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicology Letters, 2015, 237, 61-71.                                                   | 0.4  | 100       |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by<br>PEG-modified graphene oxide nanosheets. Biomaterials, 2014, 35, 9833-9843.                                                          | 5.7  | 99        |
| 56 | Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles. Nature Biomedical Engineering, 2020, 4, 732-742.                                 | 11.6 | 99        |
| 57 | Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials, 2017, 113, 243-252.                                                                          | 5.7  | 98        |
| 58 | Modularly Designed Peptide Nanoprodrug Augments Antitumor Immunity of PD-L1 Checkpoint Blockade<br>by Targeting Indoleamine 2,3-Dioxygenase. Journal of the American Chemical Society, 2020, 142,<br>2490-2496.                           | 6.6  | 98        |
| 59 | β-Amyloid peptide increases levels of iron content and oxidative stress in human cell and<br>Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology and Medicine, 2011, 50,<br>122-129.                                 | 1.3  | 96        |
| 60 | Multiple Layerâ€byâ€Layer Lipidâ€Polymer Hybrid Nanoparticles for Improved FOLFIRINOX Chemotherapy in<br>Pancreatic Tumor Models. Advanced Functional Materials, 2015, 25, 788-798.                                                       | 7.8  | 96        |
| 61 | A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Letters, 2018, 431, 171-181.                                                                               | 3.2  | 96        |
| 62 | A Graphdiyne Oxideâ€Based Iron Sponge with Photothermally Enhanced Tumorâ€Specific Fenton<br>Chemistry. Advanced Materials, 2020, 32, e2000038.                                                                                           | 11.1 | 96        |
| 63 | Engineering the Assemblies of Biomaterial Nanocarriers for Delivery of Multiple Theranostic Agents with Enhanced Antitumor Efficacy. Advanced Materials, 2013, 25, 1616-1622.                                                             | 11.1 | 95        |
| 64 | Exosomes as Extrapulmonary Signaling Conveyors for Nanoparticleâ€Induced Systemic Immune<br>Activation. Small, 2012, 8, 404-412.                                                                                                          | 5.2  | 93        |
| 65 | Neuroprotective Mechanism of Mitochondrial Ferritin on 6-Hydroxydopamine–Induced Dopaminergic<br>Cell Damage: Implication for Neuroprotection in Parkinson's Disease. Antioxidants and Redox<br>Signaling, 2010, 13, 783-796.             | 2.5  | 92        |
| 66 | Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer. Biomaterials, 2016, 80, 169-178.                                        | 5.7  | 85        |
| 67 | Injectable Hexapeptide Hydrogel for Localized Chemotherapy Prevents Breast Cancer Recurrence. ACS<br>Applied Materials & Interfaces, 2018, 10, 6972-6981.                                                                                 | 4.0  | 85        |
| 68 | Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival<br>by Transport of Functional Receptor Tyrosine Kinases. Journal of Biological Chemistry, 2016, 291,<br>8453-8464.                       | 1.6  | 83        |
| 69 | Rapid Surface Display of mRNA Antigens by Bacteriaâ€Derived Outer Membrane Vesicles for a<br>Personalized Tumor Vaccine. Advanced Materials, 2022, 34, e2109984.                                                                          | 11.1 | 82        |
| 70 | Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO<br>Releasing Nanomaterials. Small, 2019, 15, e1904382.                                                                                    | 5.2  | 79        |
| 71 | Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nature Biomedical Engineering, 2022, 6, 898-909.                                                                 | 11.6 | 79        |
| 72 | Epidermal Growth Factor Receptor-Targeting Peptide Nanoparticles Simultaneously Deliver<br>Gemcitabine and Olaparib To Treat Pancreatic Cancer with <i>Breast Cancer 2</i> ( <i>BRCA2</i> )<br>Mutation. ACS Nano, 2018, 12, 10785-10796. | 7.3  | 77        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Platelet-Membrane-Coated Nanoparticles Enable Vascular Disrupting Agent Combining Anti-Angiogenic<br>Drug for Improved Tumor Vessel Impairment. Nano Letters, 2021, 21, 2588-2595.                                                 | 4.5  | 77        |
| 74 | Tie2 Expression on Macrophages Is Required for Blood Vessel Reconstruction and Tumor Relapse after Chemotherapy. Cancer Research, 2016, 76, 6828-6838.                                                                             | 0.4  | 75        |
| 75 | Mitochondrial Ferritin Attenuates <i>β</i> -Amyloid-Induced Neurotoxicity: Reduction in Oxidative<br>Damage Through the Erk/P38 Mitogen-Activated Protein Kinase Pathways. Antioxidants and Redox<br>Signaling, 2013, 18, 158-169. | 2.5  | 73        |
| 76 | Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19. ACS Nano, 2021, 15, 14347-14359.                                                                                                             | 7.3  | 73        |
| 77 | Nanoparticleâ€Induced Exosomes Target Antigenâ€Presenting Cells to Initiate Th1â€Type Immune Activation.<br>Small, 2012, 8, 2841-2848.                                                                                             | 5.2  | 72        |
| 78 | Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics, 2017, 7, 1062-1071.                                                                                                           | 4.6  | 71        |
| 79 | Intrauterine Inflammation Increases Maternoâ€Fetal Transfer of Gold Nanoparticles in a Sizeâ€Dependent<br>Manner in Murine Pregnancy. Small, 2013, 9, 2432-2439.                                                                   | 5.2  | 70        |
| 80 | Development of a Cancer Vaccine Using In Vivo Clickâ€Chemistryâ€Mediated Active Lymph Node<br>Accumulation for Improved Immunotherapy. Advanced Materials, 2021, 33, e2006007.                                                     | 11.1 | 70        |
| 81 | Nanomaterials for Therapeutic RNA Delivery. Matter, 2020, 3, 1948-1975.                                                                                                                                                            | 5.0  | 67        |
| 82 | Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nature<br>Communications, 2020, 11, 567.                                                                                                    | 5.8  | 66        |
| 83 | An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal<br>Oncotherapy. ACS Nano, 2019, 13, 4379-4391.                                                                                      | 7.3  | 65        |
| 84 | Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Advanced Drug Delivery Reviews, 2021, 178, 113974.                                      | 6.6  | 65        |
| 85 | A Bioinspired Nanoprobe with Multilevel Responsive <i>T</i> <sub>1</sub> â€Weighted MR<br>Signalâ€Amplification Illuminates Ultrasmall Metastases. Advanced Materials, 2020, 32, e1906799.                                         | 11.1 | 64        |
| 86 | Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging. Journal of Controlled Release, 2014, 177, 11-19.                                                                | 4.8  | 62        |
| 87 | Enhanced Natural Killer Cell Immunotherapy by Rationally Assembling Fc Fragments of Antibodies onto Tumor Membranes. Advanced Materials, 2019, 31, e1804395.                                                                       | 11.1 | 62        |
| 88 | Biomimetic Nanoparticles Carrying a Repolarization Agent of Tumor-Associated Macrophages for<br>Remodeling of the Inflammatory Microenvironment Following Photothermal Therapy. ACS Nano, 2021,<br>15, 15166-15179.                | 7.3  | 61        |
| 89 | Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Experimental<br>Hematology, 2010, 38, 609-617.                                                                                                         | 0.2  | 60        |
| 90 | Tumor Microenvironment Targeting and Responsive Peptide-Based Nanoformulations for Improved<br>Tumor Therapy. Molecular Pharmacology, 2017, 92, 219-231.                                                                           | 1.0  | 57        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone, 2017, 94, 152-161.                                                                                                                    | 1.4 | 57        |
| 92  | Cell-Penetrating Nanoparticles Activate the Inflammasome to Enhance Antibody Production by<br>Targeting Microtubule-Associated Protein 1-Light Chain 3 for Degradation. ACS Nano, 2020, 14,<br>3703-3717.                             | 7.3 | 55        |
| 93  | Total Aqueous Synthesis of Au@Cu <sub>2â^'</sub> <i><sub>x</sub></i> S Core–Shell Nanoparticles for<br>In Vitro and In Vivo SERS/PA Imagingâ€Guided Photothermal Cancer Therapy. Advanced Healthcare<br>Materials, 2019, 8, e1801257. | 3.9 | 53        |
| 94  | Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism.<br>Angewandte Chemie, 2018, 130, 2401-2406.                                                                                    | 1.6 | 52        |
| 95  | Effects of nanoparticle size and gestational age on maternal biodistribution and toxicity of gold nanoparticles in pregnant mice. Toxicology Letters, 2014, 230, 10-18.                                                               | 0.4 | 50        |
| 96  | Antigen Capture and Immune Modulation by Bacterial Outer Membrane Vesicles as In Situ Vaccine for<br>Cancer Immunotherapy Postâ€₽hotothermal Therapy. Small, 2022, 18, e2107461.                                                      | 5.2 | 50        |
| 97  | In vivo tumor growth is inhibited by cytosolic iron deprivation caused by the expression of mitochondrial ferritin. Blood, 2006, 108, 2428-2434.                                                                                      | 0.6 | 49        |
| 98  | Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression. Biomaterials, 2018, 175, 110-122.                                     | 5.7 | 49        |
| 99  | Synthesis and Imaging of Biocompatible Graphdiyne Quantum Dots. ACS Applied Materials &<br>Interfaces, 2019, 11, 32798-32807.                                                                                                         | 4.0 | 49        |
| 100 | Tumor-Specific Silencing of Tissue Factor Suppresses Metastasis and Prevents Cancer-Associated<br>Hypercoagulability. Nano Letters, 2019, 19, 4721-4730.                                                                              | 4.5 | 48        |
| 101 | Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity.<br>Advanced Drug Delivery Reviews, 2021, 176, 113889.                                                                                | 6.6 | 48        |
| 102 | Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale, 2011, 3, 2636.                                                                                                                               | 2.8 | 46        |
| 103 | Targeted Co-delivery of the Iron Chelator Deferoxamine and a HIF1α Inhibitor Impairs Pancreatic Tumor<br>Growth. ACS Nano, 2019, 13, 2176-2189.                                                                                       | 7.3 | 46        |
| 104 | Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials, 2020,<br>232, 119745.                                                                                                                      | 5.7 | 46        |
| 105 | Tumor Fibroblast Specific Activation of a Hybrid Ferritin Nanocageâ€Based Optical Probe for Tumor<br>Microenvironment Imaging. Small, 2013, 9, 2427-2431.                                                                             | 5.2 | 45        |
| 106 | Functional consequences of the human DMT1 (SLC11A2) mutation on protein expression and iron uptake. Blood, 2005, 106, 3985-3987.                                                                                                      | 0.6 | 44        |
| 107 | Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials, 2010, 31, 7364-7375.                                                                                              | 5.7 | 44        |
| 108 | Inhibitory effects of trolox-encapsulated chitosan nanoparticles on tert-butylhydroperoxide induced RAW264.7 apoptosis. Biomaterials, 2012, 33, 8517-8528.                                                                            | 5.7 | 44        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Chaperonin-GroEL as a Smart Hydrophobic Drug Delivery and Tumor Targeting Molecular Machine for Tumor Therapy. Nano Letters, 2018, 18, 921-928.                                                                                                    | 4.5 | 44        |
| 110 | Reversing tumor stemness via orally targeted nanoparticles achieves efficient colon cancer treatment. Biomaterials, 2019, 216, 119247.                                                                                                             | 5.7 | 43        |
| 111 | Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 439-448.                                                  | 1.7 | 41        |
| 112 | Plasmon-Enhanced Oxidase-Like Activity and Cellular Effect of Pd-Coated Gold Nanorods. ACS Applied<br>Materials & Interfaces, 2019, 11, 45416-45426.                                                                                               | 4.0 | 41        |
| 113 | Cooperatively Responsive Peptide Nanotherapeutic that Regulates Angiopoietin Receptor Tie2 Activity<br>in Tumor Microenvironment To Prevent Breast Tumor Relapse after Chemotherapy. ACS Nano, 2019, 13,<br>5091-5102.                             | 7.3 | 41        |
| 114 | A membrane vesicle-based dual vaccine against melanoma and Lewis lung carcinoma. Biomaterials, 2012,<br>33, 6147-6154.                                                                                                                             | 5.7 | 40        |
| 115 | Nanotechnological strategies for therapeutic targeting of tumor vasculature. Nanomedicine, 2013, 8, 1209-1222.                                                                                                                                     | 1.7 | 40        |
| 116 | Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient.<br>Blood, 2014, 124, 2750-2751.                                                                                                                 | 0.6 | 40        |
| 117 | Understanding the Particokinetics of Engineered Nanomaterials for Safe and Effective Therapeutic Applications. Small, 2013, 9, 1619-1634.                                                                                                          | 5.2 | 39        |
| 118 | Specific Hemosiderin Deposition in Spleen Induced by a Low Dose of Cisplatin: Altered Iron Metabolism<br>and Its Implication as an Acute Hemosiderin Formation Model. Current Drug Metabolism, 2010, 11,<br>507-515.                               | 0.7 | 37        |
| 119 | Functional Analysis of <i>GLRX5</i> Mutants Reveals Distinct Functionalities of GLRX5 Protein.<br>Journal of Cellular Biochemistry, 2016, 117, 207-217.                                                                                            | 1.2 | 36        |
| 120 | Dopamine Delivery via pH‧ensitive Nanoparticles for Tumor Blood Vessel Normalization and an<br>Improved Effect of Cancer Chemotherapeutic Drugs. Advanced Healthcare Materials, 2019, 8, e1900283.                                                 | 3.9 | 36        |
| 121 | Remodeling of Tumor Microenvironment by Tumorâ€Targeting Nanozymes Enhances Immune Activation of CAR T Cells for Combination Therapy. Small, 2021, 17, e2102624.                                                                                   | 5.2 | 36        |
| 122 | Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials, 2013, 34, 6967-6975.                                                                                   | 5.7 | 35        |
| 123 | Suppression of Tumor Energy Supply by Liposomal Nanoparticle-Mediated Inhibition of Aerobic<br>Glycolysis. ACS Applied Materials & Interfaces, 2018, 10, 2347-2353.                                                                                | 4.0 | 35        |
| 124 | Nanomedicine Assembled by Coordinated Selenium–Platinum Complexes Can Selectively Induce<br>Cytotoxicity in Cancer Cells by Targeting the Glutathione Antioxidant Defense System. ACS<br>Biomaterials Science and Engineering, 2018, 4, 1954-1962. | 2.6 | 35        |
| 125 | Facile Synthesis of pHâ€sensitive Germanium Nanocrystals with High Quantum Yield for Intracellular<br>Acidic Compartment Imaging. Small, 2015, 11, 1954-1961.                                                                                      | 5.2 | 34        |
| 126 | Precise design of nanomedicines: perspectives for cancer treatment. National Science Review, 2019, 6, 1107-1110.                                                                                                                                   | 4.6 | 34        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Penetration Cascade of Size Switchable Nanosystem in Desmoplastic Stroma for Improved Pancreatic<br>Cancer Therapy. ACS Nano, 2021, 15, 14149-14161.                                                                 | 7.3 | 34        |
| 128 | A superparamagnetic Fe3O4-loaded polymeric nanocarrier for targeted delivery of evodiamine with enhanced antitumor efficacy. Colloids and Surfaces B: Biointerfaces, 2013, 110, 411-418.                             | 2.5 | 33        |
| 129 | Mitochondrial ferritin, a new target for inhibiting neuronal tumor cell proliferation. Cellular and<br>Molecular Life Sciences, 2015, 72, 983-997.                                                                   | 2.4 | 33        |
| 130 | Metabolic Characteristics of 16HBE and A549 Cells Exposed to Different Surface Modified Gold Nanorods. Advanced Healthcare Materials, 2016, 5, 2363-2375.                                                            | 3.9 | 33        |
| 131 | Co-Delivery of Gemcitabine and Mcl-1 SiRNA via Cationic Liposome-Based System Enhances the Efficacy of Chemotherapy in Pancreatic Cancer. Journal of Biomedical Nanotechnology, 2019, 15, 966-978.                   | 0.5 | 33        |
| 132 | Biodegradable cationic Îμ-poly-L-lysine-conjugated polymeric nanoparticles as a new effective<br>antibacterial agent. Science Bulletin, 2015, 60, 216-226.                                                           | 4.3 | 32        |
| 133 | Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity. Science Bulletin, 2016, 61, 1689-1698.                                   | 4.3 | 32        |
| 134 | Responsive and activable nanomedicines for remodeling the tumor microenvironment. Nature Protocols, 2021, 16, 405-430.                                                                                               | 5.5 | 31        |
| 135 | Fine-Tuned H-Ferritin Nanocage with Multiple Gold Clusters as Near-Infrared Kidney Specific Targeting<br>Nanoprobe. Bioconjugate Chemistry, 2015, 26, 193-196.                                                       | 1.8 | 30        |
| 136 | Overexpression of Human Wild-Type Amyloid-β Protein Precursor Decreases the Iron Content and<br>Increases the Oxidative Stress of Neuroblastoma SH-SY5Y Cells. Journal of Alzheimer's Disease, 2012,<br>30, 523-530. | 1.2 | 29        |
| 137 | pHLIP-mediated targeting of truncated tissue factor to tumor vessels causes vascular occlusion and impairs tumor growth. Oncotarget, 2015, 6, 23523-23532.                                                           | 0.8 | 29        |
| 138 | Platelet membrane-based and tumor-associated platelettargeted drug delivery systems for cancer therapy. Frontiers of Medicine, 2018, 12, 667-677.                                                                    | 1.5 | 29        |
| 139 | Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials, 2018, 158, 44-55.                                               | 5.7 | 29        |
| 140 | Overexpression of Mitochondrial Ferritin Sensitizes Cells to Oxidative Stress Via an Iron-Mediated<br>Mechanism. Antioxidants and Redox Signaling, 2009, 11, 1791-1803.                                              | 2.5 | 28        |
| 141 | Polymeric Nanoparticles Enhance the Ability of Deferoxamine To Deplete Hepatic and Systemic Iron.<br>Nano Letters, 2018, 18, 5782-5790.                                                                              | 4.5 | 27        |
| 142 | Dopamine coating as a general and facile route to biofunctionalization of superparamagnetic Fe3O4 nanoparticles for magnetic separation of proteins. RSC Advances, 2014, 4, 6657.                                    | 1.7 | 26        |
| 143 | Improvement of Stability and Efficacy of C16Y Therapeutic Peptide via Molecular Self-Assembly into Tumor-Responsive Nanoformulation. Molecular Cancer Therapeutics, 2015, 14, 2390-2400.                             | 1.9 | 26        |
| 144 | Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Medicinal Research Reviews, 2020, 40, 1084-1102.                                                 | 5.0 | 26        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Co-delivery Strategies Based on Multifunctional Nanocarriers for Cancer Therapy. Current Drug<br>Metabolism, 2012, 13, 1087-1096.                                                                              | 0.7 | 24        |
| 146 | Robust Anticancer Efficacy of a Biologically Synthesized Tumor Acidity-Responsive and<br>Autophagy-Inducing Functional Beclin 1. ACS Applied Materials & Interfaces, 2018, 10, 5227-5239.                      | 4.0 | 24        |
| 147 | Inâ€Situ Selfâ€Assembled Nanofibers Precisely Target Cancerâ€Associated Fibroblasts for Improved Tumor<br>Imaging. Angewandte Chemie, 2019, 131, 15431-15438.                                                  | 1.6 | 24        |
| 148 | Anticancer Activities of Tumor-killing Nanorobots. Trends in Biotechnology, 2019, 37, 573-577.                                                                                                                 | 4.9 | 24        |
| 149 | Mitochondrial Ferritin Is a Hypoxia-Inducible Factor 1α-Inducible Gene That Protects from<br>Hypoxia-Induced Cell Death in Brain. Antioxidants and Redox Signaling, 2019, 30, 198-212.                         | 2.5 | 24        |
| 150 | Antineoplastic activities of Gd@C82(OH)22 nanoparticles: tumor microenvironment regulation.<br>Science China Life Sciences, 2012, 55, 884-890.                                                                 | 2.3 | 23        |
| 151 | Specific tissue factor delivery using a tumor-homing peptide for inducing tumor infarction.<br>Biochemical Pharmacology, 2018, 156, 501-510.                                                                   | 2.0 | 23        |
| 152 | How can nanotechnology help membrane vesicle-based cancer immunotherapy development?. Human<br>Vaccines and Immunotherapeutics, 2013, 9, 222-225.                                                              | 1.4 | 22        |
| 153 | Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via<br>Cancerâ€Associated Fibroblast Activation. Angewandte Chemie, 2016, 128, 1062-1067.                         | 1.6 | 22        |
| 154 | Tailorâ€Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science, 2021, 8, 2002545.                                                                                  | 5.6 | 22        |
| 155 | Bifunctional Therapeutic Peptide Assembled Nanoparticles Exerting Improved Activities of Tumor<br>Vessel Normalization and Immune Checkpoint Inhibition. Advanced Healthcare Materials, 2021, 10,<br>e2100051. | 3.9 | 22        |
| 156 | Mutation spectrum in Chinese patients affected by congenital sideroblastic anemia and a search for a genotype-phenotype relationship. Haematologica, 2013, 98, e158-e160.                                      | 1.7 | 21        |
| 157 | Correlation of serum hepcidin levels with disease progression in hepatitis B virus-related disease assessed by nanopore film based assay. Scientific Reports, 2016, 6, 34252.                                  | 1.6 | 21        |
| 158 | Active targeted Janus nanoparticles enable anti-angiogenic drug combining chemotherapy agent to prevent postoperative hepatocellular carcinoma recurrence. Biomaterials, 2022, 281, 121362.                    | 5.7 | 21        |
| 159 | No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart. Toxicology Letters, 2013, 222, 197-203.                           | 0.4 | 20        |
| 160 | Identification of novel mutations in HFE, HFE2, TfR2, and SLC40A1 genes in Chinese patients affected by hereditary hemochromatosis. International Journal of Hematology, 2017, 105, 521-525.                   | 0.7 | 20        |
| 161 | Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. National<br>Science Review, 2018, 5, 365-388.                                                                        | 4.6 | 20        |
| 162 | Cancerâ€associatedâ€plateletâ€inspired nanomedicines for cancer therapy. Wiley Interdisciplinary Reviews:<br>Nanomedicine and Nanobiotechnology, 2021, 13, e1702.                                              | 3.3 | 20        |

| #   | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | 5-Aza-2′-deoxycytidine Activates Iron Uptake and Heme Biosynthesis by Increasing c-Myc Nuclear<br>Localization and Binding to the E-boxes of Transferrin Receptor 1 (TfR1) and Ferrochelatase (Fech)<br>Genes. Journal of Biological Chemistry, 2011, 286, 37196-37206.                                  | 1.6 | 19        |
| 164 | Identification of four SLC19A2 mutations in four Chinese thiamine responsive megaloblastic anemia patients without diabetes. Blood Cells, Molecules, and Diseases, 2014, 52, 203-204.                                                                                                                    | 0.6 | 19        |
| 165 | Nanomedicine targets iron metabolism for cancer therapy. Cancer Science, 2022, 113, 828-837.                                                                                                                                                                                                             | 1.7 | 19        |
| 166 | Trap and kill strategy for non-BRCA mutant pancreatic cancer by co-delivery of olaparib and JQ1 with plectin-1 targeting peptide nanoparticles. Nano Today, 2020, 33, 100877.                                                                                                                            | 6.2 | 18        |
| 167 | Intraductal fulvestrant for therapy of ERα-positive ductal carcinoma in situ of the breast: a preclinical study. Carcinogenesis, 2019, 40, 903-913.                                                                                                                                                      | 1.3 | 17        |
| 168 | Multifunctional nanoparticle systems for combined chemoand photothermal cancer therapy.<br>Frontiers of Materials Science, 2013, 7, 118-128.                                                                                                                                                             | 1.1 | 16        |
| 169 | Nanopore film based enrichment and quantification of low abundance hepcidin from human bodily fluids. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e879-e888.                                                                                                                          | 1.7 | 16        |
| 170 | Beclin 2 negatively regulates innate immune signaling and tumor development. Journal of Clinical<br>Investigation, 2020, 130, 5349-5369.                                                                                                                                                                 | 3.9 | 16        |
| 171 | Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes. Journal of Nanoparticle Research, 2014, 16, 1.                                                                                                                                                 | 0.8 | 15        |
| 172 | Assessment of the Biological Effects of a Multifunctional Nano-Drug-Carrier and Its Encapsulated<br>Drugs. Journal of Proteome Research, 2015, 14, 5193-5201.                                                                                                                                            | 1.8 | 15        |
| 173 | Assembly of hepatitis E vaccine by â€~in situ' growth of gold clusters as nano-adjuvants: an efficient way to enhance the immune responses of vaccination. Nanoscale Horizons, 2016, 1, 394-398.                                                                                                         | 4.1 | 15        |
| 174 | Targeting Delivery of Platelets Inhibitor to Prevent Tumor Metastasis. Bioconjugate Chemistry, 2019, 30, 2349-2357.                                                                                                                                                                                      | 1.8 | 15        |
| 175 | Reducing Postoperative Recurrence of Early‣tage Hepatocellular Carcinoma by a Woundâ€Targeted<br>Nanodrug. Advanced Science, 2022, 9, e2200477.                                                                                                                                                          | 5.6 | 15        |
| 176 | Construction of hydroxypropyl-β-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel. Journal of Nanoparticle Research, 2012, 14, 1.                                                                                                                                                | 0.8 | 14        |
| 177 | Improvement of the in vitro safety profile and cytoprotective efficacy of amifostine against chemotherapy by PEGylation strategy. Biochemical Pharmacology, 2016, 108, 11-21.                                                                                                                            | 2.0 | 14        |
| 178 | Selfâ€assembled peptide hydrogel scaffolds with VEGF and BMPâ€⊋ enhanced <i>in vitro</i> angiogenesis and osteogenesis. Oral Diseases, 2022, 28, 723-733.                                                                                                                                                | 1.5 | 14        |
| 179 | A Chinese family carrying novel mutations in <scp><i>SEC23B</i></scp> and <scp><i>HFE2</i></scp> ,<br>the genes responsible for congenital dyserythropoietic anaemia <scp>II</scp> ( <scp>CDA II</scp> ) and<br>primary iron overload, respectively. British Journal of Haematology, 2012, 158, 143-145. | 1.2 | 12        |
| 180 | Recent Advances in Nanomaterials with Inherent Optical and Magnetic Properties for Bioimaging and<br>Imaging-Guided Nucleic Acid Therapy. Bioconjugate Chemistry, 2020, 31, 1234-1246.                                                                                                                   | 1.8 | 12        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Redox-Responsive Functional Iron Oxide Nanocrystals for Magnetic Resonance Imaging-Guided Tumor<br>Hyperthermia Therapy and Heat-Mediated Immune Activation. ACS Applied Nano Materials, 2022, 5,<br>4537-4549.                 | 2.4 | 12        |
| 182 | Identification of CDAN1 , C15ORF41 and SEC23B mutations in Chinese patients affected by congenital dyserythropoietic anemia. Gene, 2018, 640, 73-78.                                                                            | 1.0 | 11        |
| 183 | Molecularly engineered truncated tissue factor with therapeutic aptamers for tumor-targeted delivery and vascular infarction. Acta Pharmaceutica Sinica B, 2021, 11, 2059-2069.                                                 | 5.7 | 11        |
| 184 | Rayleigh Instability-Driven Coaxial Spinning of Knotted Cell-Laden Alginate Fibers as Artificial Lymph<br>Vessels. ACS Applied Materials & Interfaces, 2021, 13, 22142-22149.                                                   | 4.0 | 11        |
| 185 | The synergistic blood-vessel-embolization of coagulation fusion protein with temperature sensitive nanogels in interventional therapies on hepatocellular carcinoma. Chemical Engineering Journal, 2022, 433, 134357.           | 6.6 | 11        |
| 186 | Congenital dyserythropoietic anemia in China: a case report from two families and a review. Annals of<br>Hematology, 2014, 93, 773-777.                                                                                         | 0.8 | 10        |
| 187 | Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells. Fundamental Research, 2022, 2, 23-36.                                                   | 1.6 | 10        |
| 188 | Stroma-targeted nanoparticles that remodel stromal alignment to enhance drug delivery and improve<br>the antitumor efficacy of Nab-paclitaxel in pancreatic ductal adenocarcinoma models. Nano Today,<br>2022, 45, 101533.      | 6.2 | 10        |
| 189 | Deciphering an Underlying Mechanism of Differential Cellular Effects of Nanoparticles: An Example of<br>Bach-1 Dependent Induction of HO-1 Expression by Gold Nanorod. Biointerphases, 2012, 7, 10.                             | 0.6 | 9         |
| 190 | Analytical methods for nano-bio interface interactions. Science China Chemistry, 2016, 59, 1467-1478.                                                                                                                           | 4.2 | 9         |
| 191 | Specific Silencing of Microglial Gene Expression in the Rat Brain by Nanoparticle-Based Small<br>Interfering RNA Delivery. ACS Applied Materials & Interfaces, 2022, 14, 5066-5079.                                             | 4.0 | 8         |
| 192 | Nanotechnological strategies for prostate cancer imaging and diagnosis. Science China Chemistry, 2022, 65, 1498-1514.                                                                                                           | 4.2 | 8         |
| 193 | Identification of two novel PBGD mutations in acute intermittent porphyria patients accompanying anemia in mainland China. Blood Cells, Molecules, and Diseases, 2011, 47, 138-139.                                             | 0.6 | 7         |
| 194 | Hepcidin levels in hyperprolactinemic women monitored by nanopore thin film based assay:<br>Correlation with pregnancy-associated hormone prolactin. Nanomedicine: Nanotechnology, Biology,<br>and Medicine, 2015, 11, 871-878. | 1.7 | 7         |
| 195 | Metabonomic Investigation of Biological Effects of a New Vessel Target Protein tTF-pHLIP in a Mouse<br>Model. Journal of Proteome Research, 2020, 19, 238-247.                                                                  | 1.8 | 7         |
| 196 | Intelligent antithrombotic nanomedicines: Progress, opportunities, and challenges. View, 2021, 2, 20200145.                                                                                                                     | 2.7 | 7         |
| 197 | Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy. Bioactive Materials, 2022, 18, 42-55.                                                                                | 8.6 | 7         |
| 198 | Modulation of Tumor Vasculature Network: Key Strategies. Small Structures, 2022, 3, .                                                                                                                                           | 6.9 | 7         |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | A new human catalytic antibody Seâ€scFvâ€2D8 and its selenium ontaining single domains with high GPX activity. Journal of Molecular Recognition, 2010, 23, 352-359.                                       | 1.1  | 6         |
| 200 | BECN2 (beclin 2)-mediated non-canonical autophagy in innate immune signaling and tumor development. Autophagy, 2020, 16, 2310-2312.                                                                       | 4.3  | 6         |
| 201 | A Study on Anti-oxidative Activity of Soybean Peptides with Linoleic Acid Peroxidation Systems1.<br>Chemical Research in Chinese Universities, 2006, 22, 205-208.                                         | 1.3  | 5         |
| 202 | Biological effects of amphiphilic copolymer nanoparticle-encapsulated multi-target chemotherapeutic drugs on MCF-7 human breast cancer cells. Metabolomics, 2017, 13, 1.                                  | 1.4  | 5         |
| 203 | Doxorubicin and paclitaxel carried by methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) is superior than traditional drug-delivery methods. Nanomedicine, 2018, 13, 913-928.                       | 1.7  | 5         |
| 204 | Identification of a novel UROS mutation in a Chinese patient affected by congenital erythropoietic porphyria. Blood Cells, Molecules, and Diseases, 2014, 52, 57-58.                                      | 0.6  | 4         |
| 205 | Hydroxyethyl-functionalized ultrasmall chitosan nanoparticles as a gene delivery carrier. RSC<br>Advances, 2013, 3, 14791.                                                                                | 1.7  | 3         |
| 206 | Say No to Tumors: NO Matters. Matter, 2019, 1, 794-796.                                                                                                                                                   | 5.0  | 3         |
| 207 | X-linked dominant protoporphyria in a Chinese pedigree reveals a four-based deletion of ALAS2. Annals<br>of Translational Medicine, 2020, 8, 344-344.                                                     | 0.7  | 3         |
| 208 | Graphene: Unraveling Stress-Induced Toxicity Properties of Graphene Oxide and the Underlying<br>Mechanism (Adv. Mater. 39/2012). Advanced Materials, 2012, 24, 5390-5390.                                 | 11.1 | 2         |
| 209 | Ferritin-based nanoprobes: promising materials for tumor imaging. Nanomedicine, 2013, 8, 1899-1900.                                                                                                       | 1.7  | 2         |
| 210 | The accurate localization of fluorescent<br>nanoparticle <font>Au</font> – <font>Ft</font> in <i>nu</i> /i>numice kidney. Journal of<br>Innovative Optical Health Sciences, 2014, 07, 1450021.            | 0.5  | 2         |
| 211 | Mesoporous silica-coating of gold nanorods by a templated method. Ceramics International, 2014, 40, 15083-15088.                                                                                          | 2.3  | 2         |
| 212 | Announcing the 2019 ACS Nano Award Lecture Laureates. ACS Nano, 2019, 13, 4859-4861.                                                                                                                      | 7.3  | 2         |
| 213 | Putting the World Back Together and Announcing the 2021 ACS Nano Award Lecture Laureates. ACS Nano, 2021, 15, 7837-7839.                                                                                  | 7.3  | 2         |
| 214 | Recent Advances of Nanocarriers for Effective Delivery of Therapeutic Peptides. Precision<br>Nanomedicine, 2020, 3, .                                                                                     | 0.4  | 2         |
| 215 | Tumor-discriminating Nanoceria Antioxidant Enables Protection Against Acute Kidney Injury Without<br>Compromising Chemotherapeutic Effects. Chemical Research in Chinese Universities, 2021, 37, 621-622. | 1.3  | 1         |
| 216 | Remodeling of Tumor Microenvironment by Tumorâ€Targeting Nanozymes Enhances Immune Activation<br>of CAR T Cells for Combination Therapy (Small 43/2021). Small, 2021, 17, 2170224.                        | 5.2  | 1         |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Chapter 8. Applications of Nuclear Analytical Techniques for Iron-omics Studies. , 2010, , 239-264.                                                                                                           |     | Ο         |
| 218 | Excessive Iron and Weightlessness Effects on the Femurs and Livers of Rats. Aviation, Space, and Environmental Medicine, 2015, 86, 8-14.                                                                      | 0.6 | 0         |
| 219 | Overexpression of Mitochondrial Ferritin Causes Cytosolic Iron Starvation and Changes Cellular<br>Iron Homeostatis Blood, 2004, 104, 3195-3195.                                                               | 0.6 | 0         |
| 220 | DMT1 Mutation in a Patient with Hypochromic Microcytic Anemia: Functional Consequences and Response to Erythropoietin Blood, 2005, 106, 3587-3587.                                                            | 0.6 | 0         |
| 221 | Polyethylenimine–Poly(lactic-co-glycolic acid)2 Nanoparticles Show an Innate Targeting Ability to the<br>Submandibular Salivary Gland via the Muscarinic 3 Receptor. ACS Central Science, 2021, 7, 1938-1948. | 5.3 | 0         |
| 222 | Learning from natural design for local anesthetic delivery. Trends in Pharmacological Sciences, 2021,                                                                                                         | 4.0 | 0         |
| 223 | Editorial/Preface. Advanced Drug Delivery Reviews, 2022, 186, 114345.                                                                                                                                         | 6.6 | 0         |