
Piotr Garstecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1965133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Accounts of Chemical Research, 2022, 55, 605-615.	7.6	29
2	From dynamic self-organization to avalanching instabilities in soft-granular threads. Soft Matter, 2022, 18, 1801-1818.	1.2	0
3	Microfluidic One-Pot Digital Droplet FISH Using LNA/DNA Molecular Beacons for Bacteria Detection and Absolute Quantification. Biosensors, 2022, 12, 237.	2.3	3
4	A double-step emulsification device for direct generation of double emulsions. Soft Matter, 2022, 18, 6157-6166.	1.2	1
5	Droplet-based methods for tackling antimicrobial resistance. Current Opinion in Biotechnology, 2022, 76, 102755.	3.3	4
6	High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria. Analytical Chemistry, 2021, 93, 843-850.	3.2	15
7	Biofabricating murine and human myoâ€substitutes for rapid volumetric muscle loss restoration. EMBO Molecular Medicine, 2021, 13, e12778.	3.3	29
8	Study of Active Janus Particles in the Presence of an Engineered Oil–Water Interface. Langmuir, 2021, 37, 204-210.	1.6	16
9	Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing. Lab on A Chip, 2020, 20, 54-63.	3.1	35
10	Diffusion and flow in complex liquids. Soft Matter, 2020, 16, 114-124.	1.2	20
11	A microfluidic platform for screening and optimization of organic reactions in droplets. Journal of Flow Chemistry, 2020, 10, 397-408.	1.2	13
12	lons in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. Physical Review Letters, 2020, 125, 056001.	2.9	17
13	A Method for Simultaneous Polishing and Hydrophobization of Polycarbonate for Microfluidic Applications. Polymers, 2020, 12, 2490.	2.0	11
14	Split or slip – passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. RSC Advances, 2020, 10, 23058-23065.	1.7	9
15	Combinatorial Antimicrobial Susceptibility Testing Enabled by Non-Contact Printing. Micromachines, 2020, 11, 142.	1.4	7
16	Droplet-based digital antibiotic susceptibility screen reveals single-cell clonal heteroresistance in an isogenic bacterial population. Scientific Reports, 2020, 10, 3282.	1.6	54
17	Label-Free Optical Readout of Bacteria Density in Nanoliter Droplets. , 2019, , .		0
18	Passive and parallel microfluidic formation of droplet interface bilayers (DIBs) for measurement of leakage of small molecules through artificial phospholipid membranes. Sensors and Actuators B: Chemical, 2019, 286, 258-265.	4.0	19

#	Article	IF	CITATIONS
19	Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels. Nature Communications, 2019, 10, 2528.	5.8	47
20	Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nature Physics, 2019, 15, 706-713.	6.5	30
21	Evaluation of droplet-based microfluidic platforms as a convenient tool for lipases and esterases assays. Preparative Biochemistry and Biotechnology, 2019, 49, 727-734.	1.0	4
22	3Dâ€Printing of Functionally Graded Porous Materials Using Onâ€Demand Reconfigurable Microfluidics. Angewandte Chemie - International Edition, 2019, 58, 7620-7625.	7.2	73
23	3Dâ€Printing of Functionally Graded Porous Materials Using Onâ€Demand Reconfigurable Microfluidics. Angewandte Chemie, 2019, 131, 7702-7707.	1.6	6
24	Non-wetting droplets in capillaries of circular cross-section: Scaling function. Physics of Fluids, 2019, 31, 043102.	1.6	3
25	Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. Lab on A Chip, 2019, 19, 1183-1192.	3.1	17
26	Direct droplet digital PCR (dddPCR) for species specific, accurate and precise quantification of bacteria in mixed samples. Analytical Methods, 2019, 11, 5730-5735.	1.3	14
27	Recent developments of microfluidics as a tool for biotechnology and microbiology. Current Opinion in Biotechnology, 2019, 55, 60-67.	3.3	63
28	Droplet Microfluidics as a Tool for the Generation of Granular Matters and Functional Emulsions. KONA Powder and Particle Journal, 2019, 36, 50-71.	0.9	15
29	In vivo volumetric imaging by crosstalk-free full-field OCT. Optica, 2019, 6, 608.	4.8	50
30	Optofluidic Platform for Bacteria Screening in Nanoliter Droplets. , 2019, , .		0
31	Wall fluidization in two acts: from stiff to soft roughness. Soft Matter, 2018, 14, 1088-1093.	1.2	7
32	Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering. Advanced Functional Materials, 2018, 28, 1800874.	7.8	32
33	Teflon microreactors for organic syntheses. Sensors and Actuators B: Chemical, 2018, 255, 2274-2281.	4.0	13
34	Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles. Analyst, The, 2018, 143, 843-849.	1.7	15
35	Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on <i>E. coli</i> . Lab on A Chip, 2018, 18, 3668-3677.	3.1	37
36	Energy Harvesting: Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering (Adv. Funct. Mater. 20/2018). Advanced Functional Materials, 2018, 28, 1870133.	7.8	4

#	Article	IF	CITATIONS
37	An FEP Microfluidic Reactor for Photochemical Reactions. Micromachines, 2018, 9, 156.	1.4	5
38	A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. Lab on A Chip, 2017, 17, 1323-1331.	3.1	44
39	Lipid bilayer at vertically aligned nanoliter droplets generated by two-layered microfluidic channels. , 2017, , .		0
40	Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis. Nature Communications, 2017, 8, 15255.	5.8	33
41	Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over a dynamic range of 6 logs and beyond. Lab on A Chip, 2017, 17, 1980-1987.	3.1	40
42	A precise and accurate microfluidic droplet dilutor. Analyst, The, 2017, 142, 2901-2911.	1.7	19
43	Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers inÂvitro and inAvivo. Biomaterials, 2017, 131, 98-110.	5.7	252
44	Calibration-free assays on standard real-time PCR devices. Scientific Reports, 2017, 7, 44854.	1.6	8
45	Controlled droplet microfluidic systems for multistep chemical and biological assays. Chemical Society Reviews, 2017, 46, 6210-6226.	18.7	214
46	Fluidization and wall slip of soft glassy materials by controlled surface roughness. Physical Review E, 2017, 95, 052602.	0.8	21
47	An Automated Microfluidic System for the Generation of Droplet Interface Bilayer Networks. Micromachines, 2017, 8, 93.	1.4	12
48	Designing and interpretation of digital assays: Concentration of target in the sample and in the source of sample. Biomolecular Detection and Quantification, 2016, 10, 24-30.	7.0	12
49	Dodecylresorufin (C12R) Outperforms Resorufin in Microdroplet Bacterial Assays. ACS Applied Materials & Interfaces, 2016, 8, 11318-11325.	4.0	40
50	Droplet microfluidics for microbiology: techniques, applications and challenges. Lab on A Chip, 2016, 16, 2168-2187.	3.1	326
51	Whole Teflon valves for handling droplets. Lab on A Chip, 2016, 16, 2198-2210.	3.1	16
52	Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate. Lab on A Chip, 2016, 16, 2044-2049.	3.1	45
53	Lifetime of Phosphorescence from Nanoparticles Yields Accurate Measurement of Concentration of Oxygen in Microdroplets, Allowing One To Monitor the Metabolism of Bacteria. Analytical Chemistry, 2016, 88, 12006-12012.	3.2	24
54	Microfluidic observation of the onset of reactiveâ€infitration instability in an analog fracture. Geophysical Research Letters, 2016, 43, 6907-6915.	1.5	35

#	Article	IF	CITATIONS
55	Stable hydrophilic surface of polycarbonate. Sensors and Actuators B: Chemical, 2016, 226, 151-155.	4.0	13
56	Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette. Lab on A Chip, 2016, 16, 893-901.	3.1	38
57	Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments. Lab on A Chip, 2016, 16, 764-772.	3.1	46
58	Scaling up the Throughput of Synthesis and Extraction in Droplet Microfluidic Reactors. Journal of Flow Chemistry, 2015, 5, 110-118.	1.2	10
59	Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks. Physical Review E, 2015, 92, 063008.	0.8	7
60	Droplet Microfluidic Technique for the Study of Fermentation. Micromachines, 2015, 6, 1514-1525.	1.4	9
61	Thin-finger growth and droplet pinch-off in miscible and immiscible displacements in a periodic network of microfluidic channels. Physics of Fluids, 2015, 27, 112109.	1.6	13
62	Droplet Clusters: Exploring the Phase Space of Soft Mesoscale Atoms. Physical Review Letters, 2015, 114, 188302.	2.9	30
63	Blood diagnostics using sedimentation to extract plasma on a fully integrated pointâ€of are microfluidic system. Engineering in Life Sciences, 2015, 15, 333-339.	2.0	8
64	Rational Design of Digital Assays. Analytical Chemistry, 2015, 87, 8203-8209.	3.2	13
65	Chemical computing with reaction–diffusion processes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140219.	1.6	43
66	Go with the flow. Nature Physics, 2015, 11, 305-306.	6.5	1
67	Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds. ACS Applied Materials & Interfaces, 2015, 7, 23660-23671.	4.0	55
68	Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup. Optics Express, 2015, 23, 27724.	1.7	11
69	A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Lab on A Chip, 2015, 15, 541-548.	3.1	43
70	Generation of Nanoliter Droplets on Demand at Hundred-Hz Frequencies. Micromachines, 2014, 5, 1002-1011.	1.4	12
71	Comment on "Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics―by NN. Deng, W. Wang, XJ. Ju, R. Xie, D. A. Weitz and LY. Chu, Lab Chip, 2013,13, 4047. Lab on A Chip, 2014, 14, 1477-1478.	3.1	5
72	Highly ordered and tunable polyHIPEs by using microfluidics. Journal of Materials Chemistry B, 2014, 2, 2290.	2.9	80

#	Article	IF	CITATIONS
73	Microfluidic traps for hard-wired operations on droplets. Lab on A Chip, 2013, 13, 4096.	3.1	54
74	Bacterial Growth and Adaptation in Microdroplet Chemostats. Angewandte Chemie - International Edition, 2013, 52, 8908-8911.	7.2	107
75	Simple modular systems for generation of droplets on demand. Lab on A Chip, 2013, 13, 3689.	3.1	29
76	Flow focusing with viscoelastic liquids. Physics of Fluids, 2013, 25, .	1.6	55
77	Custom tailoring multiple droplets one-by-one. Lab on A Chip, 2013, 13, 4308.	3.1	11
78	Block-and-break generation of microdroplets with fixed volume. Biomicrofluidics, 2013, 7, 024108.	1.2	38
79	Microfluidic architectures for efficient generation of chemistry gradations in droplets. Microfluidics and Nanofluidics, 2013, 14, 235-245.	1.0	17
80	Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions. Microfluidics and Nanofluidics, 2013, 14, 597-604.	1.0	12
81	Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions. Microfluidics and Nanofluidics, 2013, 14, 767-774.	1.0	17
82	A micro-rheological method for determination of blood type. Lab on A Chip, 2013, 13, 2796.	3.1	31
83	Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography. Optics Express, 2013, 21, 24025.	1.7	28
84	Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave. Physical Review E, 2012, 85, 056303.	0.8	8
85	Polyethyleneimine coating renders polycarbonate resistant to organic solvents. Lab on A Chip, 2012, 12, 2580.	3.1	27
86	Iterative operations on microdroplets and continuous monitoring of processes within them; determination of solubility diagrams of proteins. Lab on A Chip, 2012, 12, 4022.	3.1	25
87	The structure and stability of multiple micro-droplets. Soft Matter, 2012, 8, 7269.	1.2	177
88	Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on A Chip, 2012, 12, 1629.	3.1	204
89	Characterization of Caulobacter crescentus FtsZ Protein Using Dynamic Light Scattering. Journal of Biological Chemistry, 2012, 287, 23878-23886.	1.6	26
90	Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors. Lab on A Chip, 2012, 12, 2743.	3.1	19

#	Article	IF	CITATIONS
91	Automated Droplet Microfluidic Chips for Biochemical Assays. , 2012, , 117-136.		0
92	Automated generation of libraries of nL droplets. Lab on A Chip, 2012, 12, 3995.	3.1	45
93	Discontinuous Transition in a Laminar Fluid Flow: A Change of Flow Topology inside a Droplet Moving in a Micron-Size Channel. Physical Review Letters, 2012, 108, 134501.	2.9	49
94	Automated high-throughput generation of droplets. Lab on A Chip, 2011, 11, 3593.	3.1	37
95	Hydrophilic polycarbonate for generation of oil in water emulsions in microfluidic devices. Lab on A Chip, 2011, 11, 1151.	3.1	26
96	Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles. Lab on A Chip, 2011, 11, 748-752.	3.1	48
97	Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab on A Chip, 2011, 11, 173-175.	3.1	87
98	Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab on A Chip, 2011, 11, 3603.	3.1	75
99	Bubbles navigating through networks of microchannels. Lab on A Chip, 2011, 11, 3970.	3.1	32
100	Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics, 2011, 5, 013405.	1.2	33
101	Ionic polarization of liquid-liquid interfaces; dynamic control of the rate of electro-coalescence. Applied Physics Letters, 2011, 99, .	1.5	11
102	Bonding of microfluidic devices fabricated in polycarbonate. Lab on A Chip, 2010, 10, 1324.	3.1	140
103	Transport of resistance through a long microfluidic channel. Physical Review E, 2010, 82, 056301.	0.8	7
104	Large-scale molecular dynamics verification of the Rayleigh-Plesset approximation for collapse of nanobubbles. Physical Review E, 2010, 82, 066309.	0.8	19
105	Dynamic memory in a microfluidic system of droplets traveling through a simple network of microchannels. Lab on A Chip, 2010, 10, 484-493.	3.1	55
106	Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device. Lab on A Chip, 2010, 10, 512-518.	3.1	51
107	High-throughput automated droplet microfluidic system for screening of reaction conditions. Lab on A Chip, 2010, 10, 816.	3.1	106
108	Formation of Droplets and Bubbles in Microfluidic Systems. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 163-181.	0.5	25

#	Article	IF	CITATIONS
109	Transport of Droplets in Microfluidic Systems. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 183-202.	0.5	Ο
110	Propulsion of flexible polymer structures in a rotating magnetic field. Journal of Physics Condensed Matter, 2009, 21, 204110.	0.7	63
111	Thousandâ€Fold Acceleration of Phase Decomposition in Polymer/Liquid Crystal Blends. ChemPhysChem, 2009, 10, 2620-2622.	1.0	2
112	Dynamic charge separation in a liquid crystalline meniscus. Soft Matter, 2009, 5, 2352-2360.	1.2	3
113	Swimming at low Reynolds numbers—motility of micro-organisms. Journal of Physics Condensed Matter, 2009, 21, 200301.	0.7	6
114	Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5, 585-594.	1.0	299
115	Formation of Bubbles and Droplets in Parallel, Coupled Flowâ€Focusing Geometries. Small, 2008, 4, 1795-1805.	5.2	116
116	Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595, 141-161.	1.4	571
117	Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 2008, 4, 258-262.	1.2	93
118	Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matter, 2008, 4, 1403.	1.2	62
119	Coding/Decoding and Reversibility of Droplet Trains in Microfluidic Networks. Science, 2007, 315, 828-832.	6.0	214
120	Screening of the Effect of Surface Energy of Microchannels on Microfluidic Emulsification. Langmuir, 2007, 23, 8010-8014.	1.6	78
121	Net Charge and Electrophoretic Mobility of Lysozyme Charge Ladders in Solutions of Nonionic Surfactant. Journal of Physical Chemistry B, 2007, 111, 5503-5510.	1.2	15
122	Synthesis of Composite Emulsions and Complex Foams with the use of Microfluidic Flowâ€Focusing Devices. Small, 2007, 3, 1792-1802.	5.2	75
123	Diffusion and Viscosity in a Crowded Environment:Â from Nano- to Macroscale. Journal of Physical Chemistry B, 2006, 110, 25593-25597.	1.2	97
124	Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab on A Chip, 2006, 6, 207-212.	3.1	129
125	Flowing Crystals: Nonequilibrium Structure of Foam. Physical Review Letters, 2006, 97, 024503.	2.9	67
126	Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on A Chip, 2006, 6, 437.	3.1	1,863

#	Article	IF	CITATIONS
127	Flowing Lattices of Bubbles as Tunable, Self-Assembled Diffraction Gratings. Small, 2006, 2, 1292-1298.	5.2	63
128	Impossible order. Nature Physics, 2006, 2, 733-734.	6.5	4
129	Bifurcation of droplet flows within capillaries. Physical Review E, 2006, 74, 036311.	0.8	76
130	Tessellation of a stripe. Physical Review E, 2006, 73, 031603.	0.8	17
131	Bubbling in Unbounded Coflowing Liquids. Physical Review Letters, 2006, 96, 124504.	2.9	45
132	Oscillations with uniquely long periods in a microfluidic bubble generator. Nature Physics, 2005, 1, 168-171.	6.5	67
133	Escherichia coli swim on the right-hand side. Nature, 2005, 435, 1271-1274.	13.7	432
134	Combining microscience and neurobiology. Current Opinion in Neurobiology, 2005, 15, 560-567.	2.0	51
135	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 724-728.	7.2	700
136	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 3799-3799.	7.2	55
137	An Axisymmetric Flow-Focusing Microfluidic Device. Advanced Materials, 2005, 17, 1067-1072.	11.1	335
138	Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions. Physical Review Letters, 2005, 94, 164501.	2.9	480
139	Nonlinear Dynamics of a Flow-Focusing Bubble Generator: An Inverted Dripping Faucet. Physical Review Letters, 2005, 94, 234502.	2.9	110
140	Microoxen: Microorganisms to move microscale loads. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11963-11967.	3.3	355
141	Design for mixing using bubbles in branched microfluidic channels. Applied Physics Letters, 2005, 86, 244108.	1.5	77
142	Dynamic control of liquid-core/liquid-cladding optical waveguides. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12434-12438.	3.3	287
143	Self-Assembled Aggregates of IgGs as Templates for the Growth of Clusters of Gold Nanoparticles. Angewandte Chemie - International Edition, 2004, 43, 1555-1558.	7.2	45
144	Liquids with internal surfaces at and out of equilibrium: the homogeneity index. Journal of Molecular Liquids, 2004, 112, 29-35.	2.3	0

#	Article	IF	CITATIONS
145	Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters, 2004, 85, 2649-2651.	1.5	563
146	Scattering Patterns of Multiply Continuous Cubic Phases in Block Copolymers. I. The Model. Macromolecules, 2003, 36, 9181-9190.	2.2	14
147	Scattering Patterns of Multiply Continuous Cubic Phases in Block Copolymers. II. Application to Various Triply Periodic Architectures. Macromolecules, 2003, 36, 9191-9198.	2.2	8
148	Multiple photonic band gaps in the structures composed of core-shell particles. Journal of Applied Physics, 2003, 94, 4244-4247.	1.1	15
149	Photonic properties of an inverted face centered cubic opal under stretch and shear. Applied Physics Letters, 2003, 82, 1553-1555.	1.5	12
150	Two-Dimensional Colloid Crystals Obtained by Coupling of Flow and Confinement. Physical Review Letters, 2003, 91, 128301.	2.9	66
151	Photonic properties of multicontinuous cubic phases. Physical Review B, 2002, 66, .	1.1	24
152	Scattering Patterns of Self-Assembled Cubic Phases. 2. Analysis of the Experimental Spectra. Langmuir, 2002, 18, 2529-2537.	1.6	49
153	Scattering Patterns of Self-Assembled Cubic Phases. 1. The Model. Langmuir, 2002, 18, 2519-2528.	1.6	45
154	Scattering patterns of self-assembled gyroid cubic phases in amphiphilic systems. Journal of Chemical Physics, 2001, 115, 1095-1099.	1.2	11
155	Periodic surfaces of simple and complex topology: Comparison of scattering patterns. Physical Review E, 2001, 64, 021501.	0.8	15
156	Scattering on triply periodic minimal surfaces—the effect of the topology, Debye–Waller, and molecular form factors. Journal of Chemical Physics, 2000, 113, 3772-3779.	1.2	20
157	Energy landscapes, supergraphs, and "folding funnels―in spin systems. Physical Review E, 1999, 60, 3219-3226.	0.8	57