Junhu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1964612/publications.pdf

Version: 2024-02-01

26630 10734 19,725 191 56 138 citations g-index h-index papers 197 197 197 20761 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 3953-3957.	13.8	2,907
2	The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf 5
3	Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011, 47, 6858.	4.1	1,458
4	Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Upâ€Conversion Bioimaging Applications. Advanced Functional Materials, 2012, 22, 4732-4740.	14.9	1,019
5	The Dryâ€6tyle Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Advanced Materials, 2007, 19, 2213-2217.	21.0	884
6	Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots. ACS Nano, 2014, 8, 2541-2547.	14.6	701
7	Colloidal Selfâ€Assembly Meets Nanofabrication: From Twoâ€Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Materials, 2010, 22, 4249-4269.	21.0	577
8	Control the size and surface chemistry of graphene for the rising fluorescent materials. Chemical Communications, 2012, 48, 4527.	4.1	384
9	Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Advances, 2012, 2, 2717.	3 . 6	370
10	Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale, 2014, 6, 4676.	5 . 6	360
11	Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 2010, 5, 117-127.	11.9	273
12	The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chemical Communications, 2014, 50, 13845-13848.	4.1	245
13	Direct observation of surfaceâ€enhanced Raman scattering in ZnO nanocrystals. Journal of Raman Spectroscopy, 2009, 40, 1072-1077.	2.5	220
14	Self-assembly of photonic crystals from polymer colloids. Current Opinion in Colloid and Interface Science, 2009, 14, 103-114.	7.4	208
15	Investigating the surface state of graphene quantum dots. Nanoscale, 2015, 7, 7927-7933.	5. 6	196
16	Bioinspired Waterâ€Vaporâ€Responsive Organic/Inorganic Hybrid Oneâ€Dimensional Photonic Crystals with Tunable Fullâ€Color Stop Band. Advanced Functional Materials, 2010, 20, 3784-3790.	14.9	184
17	A general route to make non-conjugated linear polymers luminescent. Chemical Communications, 2012, 48, 10889.	4.1	183
18	Mercaptoacetic Acid-Capped Silver Nanoparticles Colloid:Â Formation, Morphology, and SERS Activity. Langmuir, 2003, 19, 4285-4290.	3.5	176

#	Article	IF	Citations
19	Suppression of the Coffee Ring Effect by Hydrosoluble Polymer Additives. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2775-2780.	8.0	167
20	Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography. Journal of the American Chemical Society, 2005, 127, 7688-7689.	13.7	160
21	Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Coreâ~Shell Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 2465-2469.	3.1	156
22	Luminescent One-Dimensional Nanoscale Materials with Ptllâ‹â‹â‹Ptll Interactions. Angewandte Chemie - International Edition, 2006, 45, 5610-5613.	13.8	147
23	Self-Assembled Metal Colloid Films:  Two Approaches for Preparing New SERS Active Substrates. Langmuir, 2004, 20, 1298-1304.	3.5	146
24	Unraveling Bright Moleculeâ€Like State and Dark Intrinsic State in Greenâ€Fluorescence Graphene Quantum Dots via Ultrafast Spectroscopy. Advanced Optical Materials, 2013, 1, 264-271.	7.3	144
25	Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale, 2013, 5, 7776.	5.6	142
26	Patterning Colloidal Crystals and Nanostructure Arrays by Soft Lithography. Advanced Functional Materials, 2010, 20, 3411-3424.	14.9	133
27	Bioinspired Multifunctional Vanadium Dioxide: Improved Thermochromism and Hydrophobicity. Langmuir, 2014, 30, 10766-10771.	3.5	131
28	Hollow Titania Spheres with Movable Silica Spheres Inside. Langmuir, 2004, 20, 11312-11314.	3.5	125
29	Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon, 2014, 77, 462-472.	10.3	124
30	Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. Journal of Materials Chemistry, 2009, 19, 1806.	6.7	104
31	Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals. Journal of Materials Chemistry, 2011, 21, 1264-1270.	6.7	104
32	Fluorescent Nanocrystalâ^'Polymer Composites from Aqueous Nanocrystals:Â Methods without Ligand Exchange. Chemistry of Materials, 2005, 17, 4783-4788.	6.7	103
33	Morphology and Wettability Control of Silicon Cone Arrays Using Colloidal Lithography. Langmuir, 2009, 25, 7375-7382.	3.5	103
34	Bioinspired Silica Surfaces with Near-Infrared Improved Transmittance and Superhydrophobicity by Colloidal Lithography. Langmuir, 2010, 26, 9842-9847.	3.5	99
35	Controlled Fabrication of Cross-Linked Nanoparticles/Polymer Composite Thin Films through the Combined Use of Surface-Initiated Atom Transfer Radical Polymerization and Gas/Solid Reaction. Journal of the American Chemical Society, 2002, 124, 13358-13359.	13.7	97
36	Mercaptopyridine Surface-Functionalized CdTe Quantum Dots with Enhanced Raman Scattering Properties. Journal of Physical Chemistry C, 2008, 112, 996-1000.	3.1	94

#	Article	IF	Citations
37	Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. Journal of Materials Chemistry, 2003, 13, 2279.	6.7	85
38	Biomimetic Surfaces for Highâ€Performance Optics. Advanced Materials, 2009, 21, 4731-4734.	21.0	84
39	One-Step Synthesis of High-Quality Gradient CdHgTe Nanocrystals: A Prerequisite to Prepare CdHgTeâ^'Polymer Bulk Composites with Intense Near-Infrared Photoluminescence. Chemistry of Materials, 2008, 20, 6764-6769.	6.7	82
40	The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2009, 71, 275-281.	5.0	76
41	Assembly of alternating TiO2/vCdS nanoparticle composite films. Journal of Materials Chemistry, 1998, 8, 1327-1328.	6.7	75
42	Facile Fabrication of Monodisperse Polymer Hollow Spheres. Langmuir, 2008, 24, 13736-13741.	3.5	75
43	Direct Observation of Quantumâ€Confined Grapheneâ€Like States and Novel Hybrid States in Graphene Oxide by Transient Spectroscopy. Advanced Materials, 2013, 25, 6539-6545.	21.0	74
44	Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission. Journal of Materials Chemistry, 2012, 22, 8903.	6.7	73
45	Assembly of One-Dimensional Organic Luminescent Nanowires Based on Quinacridone Derivatives. Journal of Physical Chemistry C, 2007, 111, 9177-9183.	3.1	70
46	Three-Dimensional Colloidal Crystal-Assisted Lithography for Two-Dimensional Patterned Arrays. Langmuir, 2007, 23, 10725-10731.	3.5	69
47	Ligand Dynamics of Aqueous CdTe Nanocrystals at Room Temperature. Journal of Physical Chemistry C, 2008, 112, 6330-6336.	3.1	68
48	Controlling Flow Behavior of Water in Microfluidics with a Chemically Patterned Anisotropic Wetting Surface. Langmuir, 2015, 31, 4032-4039.	3.5	65
49	A Universal Approach to Fabricate Various Nanoring Arrays Based on a Colloidalâ€Crystalâ€Assistedâ€Lithography Strategy. Advanced Functional Materials, 2008, 18, 4036-4042.	14.9	64
50	Preparation of SiO2@polystyrene@polypyrrole sandwich composites and hollow polypyrrole capsules with movable SiO2 spheres inside. Journal of Colloid and Interface Science, 2007, 315, 434-438.	9.4	62
51	Exploiting mammalian low-complexity domains for liquid-liquid phase separation–driven underwater adhesive coatings. Science Advances, 2019, 5, eaax3155.	10.3	62
52	Directing the Growth of Semiconductor Nanocrystals in Aqueous Solution: Role of Electrostatics. ChemPhysChem, 2008, 9, 1309-1316.	2.1	61
53	Modulating Two-Dimensional Non-Close-Packed Colloidal Crystal Arrays by Deformable Soft Lithography. Langmuir, 2010, 26, 2930-2936.	3.5	61
54	Avoiding coffee ring structure based on hydrophobic silicon pillar arrays during single-drop evaporation. Soft Matter, 2012, 8, 10448.	2.7	61

#	Article	IF	CITATIONS
55	Magnesium Oxideâ€Assisted Dualâ€Crossâ€Linking Bioâ€Multifunctional Hydrogels for Wound Repair during Fullâ€Thickness Skin Injuries. Advanced Functional Materials, 2021, 31, 2105718.	14.9	60
56	Biomimetic polyimide nanotube arrays with slippery or sticky superhydrophobicity. Journal of Colloid and Interface Science, 2010, 344, 541-546.	9.4	58
57	Efficient polymer/nanocrystal hybrid solar cells fabricated from aqueous materials. Energy and Environmental Science, 2011, 4, 2831.	30.8	58
58	Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications. Materials Horizons, 2020, 7, 2566-2595.	12.2	58
59	Controlled Fabrication of Fluorescent Barcode Nanorods. ACS Nano, 2010, 4, 4350-4360.	14.6	57
60	Polymer Bragg stack as color tunable photonic paper. Journal of Materials Chemistry, 2012, 22, 7887.	6.7	57
61	From Monomeric Nanofibers to PbS Nanoparticles/Polymer Composite Nanofibers through the Combined Use of γ-Irradiation and Gas/Solid Reaction. Journal of the American Chemical Society, 2006, 128, 6298-6299.	13.7	56
62	Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles. Nanotechnology, 2009, 20, 065304.	2.6	54
63	The sol–gel preparation of ZnO/silica core–shell composites and hollow silica structure. Materials Letters, 2007, 61, 363-368.	2.6	53
64	Enhanced light extraction from organic light-emitting devices by using microcontact printed silica colloidal crystals. Organic Electronics, 2007, 8, 635-639.	2.6	51
65	Influence of Interparticle Electrostatic Repulsion in the Initial Stage of Aqueous Semiconductor Nanocrystal Growth. Journal of Physical Chemistry C, 2008, 112, 1885-1889.	3.1	47
66	Sodium-Citrate-Assisted Synthesis of Aqueous CdTe Nanocrystals: Giving New Insight into the Effect of Ligand Shell. Journal of Physical Chemistry C, 2009, 113, 827-833.	3.1	47
67	Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Applied Physics Letters, 2010, 96, .	3.3	46
68	Janus Si Micropillar Arrays with Thermal-Responsive Anisotropic Wettability for Manipulation of Microfluid Motions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 376-382.	8.0	46
69	Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity. Nanotechnology, 2010, 21, 465702.	2.6	44
70	Patterning Organic/Inorganic Hybrid Bragg Stacks by Integrating One-Dimensional Photonic Crystals and Macrocavities through Photolithography: Toward Tunable Colorful Patterns as Highly Selective Sensors. ACS Applied Materials & Sen	8.0	43
71	Synthesis of size and shape controlled PbS nanocrystals and their self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355, 114-120.	4.7	42
72	Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Advances, 2015, 5, 39399-39403.	3.6	42

#	Article	IF	Citations
73	A Universal Approach To Fabricate Ordered Colloidal Crystals Arrays Based on Electrostatic Self-Assembly. Langmuir, 2010, 26, 17936-17942.	3.5	40
74	Highâ€Performance Plasmonic Sensors Based on Twoâ€Dimensional Ag Nanowell Crystals. Advanced Optical Materials, 2014, 2, 779-787.	7.3	40
75	Thin Films of Ag Nanoparticles Prepared from the Reduction of Agl Nanoparticles in Self-Assembled Films. Journal of Colloid and Interface Science, 2002, 255, 115-118.	9.4	38
76	Nonspherical Colloidal Crystals Fabricated by the Thermal Pressing of Colloidal Crystal Chips. Langmuir, 2005, 21, 8987-8991.	3.5	38
77	Ordered Micro/Nanostructures with Geometric Gradient: From Integrated Wettability "Library―to Anisotropic Wetting Surface. Small, 2017, 13, 1601807.	10.0	38
78	Morphology-Patterned Anisotropic Wetting Surface for Fluid Control and Gas–Liquid Separation in Microfluidics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13094-13103.	8.0	37
79	One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity. Materials Science and Engineering C, 2018, 88, 70-78.	7.3	37
80	Smart Anisotropic Wetting Surfaces with Reversed pHâ€Responsive Wetting Directions. Advanced Functional Materials, 2018, 28, 1802001.	14.9	37
81	Conformable self-assembling amyloid protein coatings with genetically programmable functionality. Science Advances, 2020, 6, eaba1425.	10.3	36
82	A novel method for the layer-by-layer assembly of metal nanoparticles transported by polymer microspheres. Journal of Materials Chemistry, 2003, 13, 514-517.	6.7	35
83	White-light emission nanofibers obtained from assembling aqueous single-colored CdTe NCs into a PPV precursor and PVA matrix. Journal of Materials Chemistry, 2009, 19, 6740.	6.7	35
84	Monolithic polyaniline/polyvinyl alcohol nanocomposite actuators with tunable stimuli-responsive properties. Sensors and Actuators B: Chemical, 2010, 145, 839-846.	7.8	35
85	Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas–liquid separation. Nanoscale, 2014, 6, 3846-3853.	5.6	35
86	Organic–inorganic hybrid photonic hydrogels as a colorful platform for visual detection of SCNâ^'. Chemical Communications, 2010, 46, 8636.	4.1	34
87	Elliptical Silicon Arrays with Anisotropic Optical and Wetting Properties. Langmuir, 2010, 26, 13715-13721.	3.5	33
88	Tunable Two-Dimensional Non-Close-Packed Microwell Arrays Using Colloidal Crystals as Templates. Langmuir, 2007, 23, 8272-8276.	3.5	30
89	Polymer brush nanopatterns with controllable features for protein pattern applications. Journal of Materials Chemistry, 2012, 22, 25116.	6.7	30
90	Hierarchical Polymer Brush Nanoarrays: A Versatile Way to Prepare Multiscale Patterns of Proteins. ACS Applied Materials & Diterfaces, 2013, 5, 2126-2132.	8.0	30

#	Article	IF	Citations
91	Elliptical Polymer Brush Ring Array Mediated Protein Patterning and Cell Adhesion on Patterned Protein Surfaces. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12587-12593.	8.0	30
92	Gold Nanotetrapods with Unique Topological Structure and Ultranarrow Plasmonic Band as Multifunctional Therapeutic Agents. Journal of Physical Chemistry Letters, 2019, 10, 4505-4510.	4.6	30
93	Easy preparation and characterization of highly fluorescent polymer composite microspheres from aqueous CdTe nanocrystals. Journal of Colloid and Interface Science, 2006, 300, 564-568.	9.4	29
94	Facile Fabrication of Large Area Polystyrene Colloidal Crystal Monolayer via Surfactant-free Langmuir-Blodgett Technique. Chemical Research in Chinese Universities, 2007, 23, 712-714.	2.6	29
95	Nanotransfer printing of gold disk, ring and crescent arrays and their IR range optical properties. Journal of Materials Chemistry C, 2014, 2, 2333.	5.5	28
96	Fabrication of Polymer/Inorganic Nanoparticles Composite Films Based on Coordinative Bonds. Chemistry Letters, 1999, 28, 5-6.	1.3	27
97	Optical properties of Ag/CdTe nanocomposite self-organized by electrostatic interaction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 101-105.	3.9	27
98	Fabrication of surface-patterned and free-standing ZnO nanobowls. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329, 184-189.	4.7	27
99	Biochemical-to-optical signal transduction by pH sensitive organic–inorganic hybrid Bragg stacks with a full color display. Journal of Materials Chemistry C, 2013, 1, 977-983.	5.5	27
100	Patterned magnetic rings fabricated by dewetting of polymer-coated magnetite nanoparticles solution. Journal of Colloid and Interface Science, 2005, 288, 503-507.	9.4	26
101	Morphology-controlled fabrication of polygonal ZnO nanobowls templated from spherical polymeric nanowell arrays. Journal of Colloid and Interface Science, 2008, 322, 327-332.	9.4	26
102	Polystyrene@TiO2 core–shell microsphere colloidal crystals and nonspherical macro-porous materials. Journal of Colloid and Interface Science, 2008, 325, 567-572.	9.4	26
103	Morphology-controlled two-dimensional elliptical hemisphere arrays fabricated by a colloidal crystal based micromolding method. Journal of Materials Chemistry, 2010, 20, 152-158.	6.7	25
104	Fabrication of Silicon/Polymer Composite Nanopost Arrays and Their Sensing Applications. Small, 2011, 7, 2769-2774.	10.0	24
105	A facile approach to fabricate three-dimensional ordered macroporous rutile titania at low calcination temperature. Journal of Materials Chemistry, 2012, 22, 2435-2441.	6.7	24
106	Naked eye plasmonic indicator with multi-responsive polymer brush as signal transducer and amplifier. Nanoscale, 2017, 9, 1925-1933.	5.6	24
107	Ag nanoparticles-coated silica–PMMA core-shell microspheres and hollow PMMA microspheres with Ag nanoparticles in the interior surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 272, 151-156.	4.7	23
108	Pure White-Light Emission of Nanocrystal-Polymer Composites. ChemPhysChem, 2006, 7, 2492-2496.	2.1	23

#	Article	IF	Citations
109	Fluorescent Nanocomposite Based on PVA Polymer Dots. Acta Chimica Sinica, 2012, 70, 2311.	1.4	23
110	Thermal responsive fluorescent nanocomposites based on carbon dots. RSC Advances, 2015, 5, 15187-15193.	3.6	22
111	Photoinduced cleaning of water-soluble dyes on patterned superhydrophilic/superhydrophobic substrates. Nanoscale, 2010, 2, 277-281.	5.6	21
112	Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays. Journal of Materials Chemistry C, 2013, 1, 933-940.	5.5	21
113	Ultrahighâ€Sensitivity Sandwiched Plasmon Ruler for Labelâ€Free Clinical Diagnosis. Advanced Materials, 2020, 32, e1905927.	21.0	20
114	Cationic Ligand Protection: A Novel Strategy for One-Pot Preparation of Narrow-Dispersed Aqueous CdS Spheres. Langmuir, 2009, 25, 10237-10242.	3.5	19
115	Effect of Electrostatic Interactions on the Photophysical Properties of the Composites of CdTe Nanocrystals and Carbazole-Containing Polymers. Journal of Physical Chemistry C, 2008, 112, 2317-2324.	3.1	18
116	Fabrication of biomimetic high performance antireflective and antifogging film by spin-coating. Journal of Colloid and Interface Science, 2012, 374, 89-95.	9.4	18
117	Building cavities in microspheres and nanospheres. Nanotechnology, 2009, 20, 065305.	2.6	17
118	Electropolymerization of highly hydrophobic polythiophene films with high adhesion force. Journal of Applied Polymer Science, 2011, 119, 1052-1059.	2.6	17
119	Thermal-Responsive Anisotropic Wetting Microstructures for Manipulation of Fluids in Microfluidics. Langmuir, 2017, 33, 494-502.	3.5	17
120	Assembly of non-close-packed 3D colloidal crystals from 2D ones in a polymer matrix viain situ layer-by-layer photopolymerization. Journal of Materials Chemistry, 2008, 18, 3536.	6.7	16
121	A facile solution-phase approach to the synthesis of luminescent europium methacrylate nanowires and their thermal conversion into europium oxide nanotubes. Nanotechnology, 2008, 19, 065607.	2.6	16
122	Manipulation of Cracks in Three-Dimensional Colloidal Crystal Films via Recognition of Surface Energy Patterns: An Approach to Regulating Crack Patterns and Shaping Microcrystals. Langmuir, 2011, 27, 8018-8026.	3.5	16
123	SERS detection of proteins on micropatterned proteinâ€mediated sandwich substrates. Journal of Raman Spectroscopy, 2011, 42, 1492-1496.	2.5	16
124	Tunable Polymer Brush/Au NPs Hybrid Plasmonic Arrays Based on Host–guest Interaction. ACS Applied Materials & Interfaces, 2014, 6, 19951-19957.	8.0	16
125	Ag nanoparticle/polymer composite barcode nanorods. Nano Research, 2015, 8, 2871-2880.	10.4	16
126	Anisotropic Wetting of Water on Patterned Asymmetric Nanostructure Arrays. Advanced Materials Interfaces, 2017, 4, 1700034.	3.7	16

#	Article	IF	Citations
127	Unpacking the toolbox of two-dimensional nanostructures derived from nanosphere templates. Materials Horizons, 2019, 6, 1380-1408.	12.2	16
128	Reinforced Blood-Derived Protein Hydrogels Enable Dual-Level Regulation of Bio-Physiochemical Microenvironments for Personalized Bone Regeneration with Remarkable Enhanced Efficacy. Nano Letters, 2022, 22, 3904-3913.	9.1	16
129	Bifunctional Fe3O4/CdS Nanocomposites Synthesized by Surface-initiated Atom Transfer Radical Polymerization. Chemistry Letters, 2005, 34, 652-653.	1.3	15
130	Low Electric Field Intensity and Thermotropic Tuning Surface Plasmon Band Shift of Gold Island Film by Liquid Crystals. Journal of Physical Chemistry C, 2012, 116, 2720-2727.	3.1	15
131	The fabrication of long-range ordered nanocrescent structures based on colloidal lithography and parallel imprinting. Nanotechnology, 2013, 24, 105307.	2.6	15
132	Polymer-assisted fabrication of gold nanoring arrays. Nano Research, 2017, 10, 3346-3357.	10.4	15
133	Fabricating a binary pattern of ordered two-dimensional luminescent (mdppy)BF arrays by dewetting. Journal of Materials Chemistry, 2006, 16 , 2135 .	6.7	14
134	Fine-Tuning the Surface Functionality of Aqueous Luminescent Nanocrystals through Surfactant Bilayer Modification. Langmuir, 2008, 24, 12730-12733.	3.5	14
135	Supercrystal structures of polyhedral PbS nanocrystals. Journal of Colloid and Interface Science, 2011, 359, 351-358.	9.4	14
136	Modulate the Morphology and Spectroscopic Property of Gold Nanoparticle Arrays by Polymer-Assisted Thermal Treatment. Journal of Physical Chemistry C, 2015, 119, 11839-11845.	3.1	14
137	Multifunctional Reversible Fluorescent Controller Based on a One-Dimensional Photonic Crystal. ACS Applied Materials & Emp; Interfaces, 2016, 8, 28844-28852.	8.0	14
138	Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes as nanostructured platforms for proton transport. Chemical Communications, 2018, 54, 8092-8095.	4.1	14
139	Nanoassembly of photoluminescent films containing rare earth complex nanoparticles on planar and microspherical supports. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278, 39-45.	4.7	13
140	Manipulation of semiconductor nanocrystal growth in polymer soft solids. Soft Matter, 2009, 5, 4113.	2.7	13
141	Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications. Journal of Physical Chemistry C, 2010, 114, 19908-19912.	3.1	13
142	Formation of nanoparticles in solid-state matrices: a strategy for bulk transparent TiO2–polymer nanocomposites. Polymer Chemistry, 2012, 3, 3296.	3.9	13
143	Morphology-controlled fabrication of elliptical nanoring arrays based on facile colloidal lithography. Journal of Materials Chemistry C, 2013, 1, 1122-1129.	5.5	13
144	Graded nanowell arrays: a fine plasmonic "library―with an adjustable spectral range. Nanoscale, 2017, 9, 6724-6733.	5.6	13

#	Article	IF	Citations
145	Multifunctional nanoparticles/silica microsphere assemblies using polyglycidyl methacrylate shells as supports. Journal of Colloid and Interface Science, 2009, 339, 83-90.	9.4	12
146	A two-step method combining electrodepositing and spin-coating for solar cell processing. Journal of Solid State Electrochemistry, 2010, 14, 1051-1056.	2.5	12
147	Graded Protein/PEG Nanopattern Arrays: Well-Defined Gradient Biomaterials to Induce Basic Cellular Behaviors. ACS Applied Materials & Interfaces, 2019, 11, 1595-1603.	8.0	12
148	A Flexible Polymer Nanofiberâ€Gold Nanoparticle Composite Film for Solarâ€Thermal Seawater Desalination. Macromolecular Rapid Communications, 2020, 41, e2000390.	3.9	12
149	A simple method of preparing Ag nanoparticles coated silica colloidal crystals and polymer-Ag nanoparticles composite macroporous films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277, 37-43.	4.7	11
150	The influence of oxygen on the fluorescence enhancement of fatty-acid-capped CdS nanocrystals. Journal of Colloid and Interface Science, 2006, 294, 104-108.	9.4	11
151	Preparation of Carbazole-Containing Amphiphilic Copolymers: An Efficient Method for the Incorporation of Functional Nanocrystals. Macromolecular Materials and Engineering, 2006, 291, 929-936.	3.6	11
152	Formation of Ordered Twoâ€Dimensional Polymer Latticeworks With Polygonal Meshes by Selfâ€Organized Anisotropic Mass Transfer. Macromolecular Chemistry and Physics, 2008, 209, 247-257.	2.2	11
153	Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents. Journal of Materials Chemistry C, 2018, 6, 10861-10869.	5.5	11
154	Correlation between Annealing-Induced Growth of Nanocrystals and the Performance of Polymer: Nanocrystals Hybrid Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1322-1328.	3.1	10
155	Fabrication of polyaniline nanofiber arrays on poly(etheretherketone) to induce enhanced biocompatibility and controlled behaviours of mesenchymal stem cells. Journal of Materials Chemistry B, 2014, 2, 7192-7200.	5.8	10
156	Facile fabrication of homogeneous and gradient plasmonic arrays with tunable optical properties via thermally regulated surface charge density. Journal of Materials Chemistry C, 2017, 5, 3962-3972.	5. 5	10
157	Fluorescence Manipulation of Carbon Dots by 1D Photonic Crystals. Advanced Optical Materials, 2018, 6, 1701262.	7.3	10
158	Integrated obstacle microstructures for gas-liquid separation and flow switching in microfluidic networks. Sensors and Actuators B: Chemical, 2018, 256, 735-743.	7.8	10
159	Preparation of monodisperse CdTe nanocrystals-SiO2 microspheres without ligands exchange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280, 169-176.	4.7	9
160	From two-dimensional metal-organic coordination networks to near-infrared luminescent PbS nanoparticle/layered polymer composite materials. Nano Research, 2008, 1, 195-202.	10.4	9
161	Patterns of conducting polypyrrole with tunable morphologies. Polymer, 2009, 50, 3938-3942.	3.8	9
162	Synergistic Reducing Effect for Synthesis of Well-Defined Au Nanooctopods With Ultra-Narrow Plasmon Band Width and High Photothermal Conversion Efficiency. Frontiers in Chemistry, 2018, 6, 335.	3.6	9

#	Article	IF	Citations
163	Au nanoring arrays with tunable morphological features and plasmonic resonances. Nano Research, 2021, 14, 4674-4679.	10.4	9
164	Control of the self-assembly behaviors of charged gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348, 240-247.	4.7	8
165	Unidirectional Wetting of Liquids on "Janus―Nanostructure Arrays under Various Media. Langmuir, 2017, 33, 2177-2184.	3.5	8
166	Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio. Lab on A Chip, 2018, 18, 979-988.	6.0	8
167	High-sensitivity microliter blood pressure sensors based on patterned micro-nanostructure arrays. Lab on A Chip, 2020, 20, 1554-1561.	6.0	8
168	From 1D to 3D: a new route to fabricate tridimensional structures via photo-generation of silver networks. RSC Advances, 2015, 5, 28633-28642.	3.6	7
169	PbS nanoparticles/polymer composite aggregates through self-assembly of amphiphilic copolymer containing cross-linked hydrophilic block. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 159-164.	4.7	6
170	Preparation and properties of polymeric colloidal crystals containing rare earth complexes. Journal of Rare Earths, 2008, 26, 932-934.	4.8	6
171	Autonomous Control of Fluids in a Wide Surface Tension Range in Microfluidics. Langmuir, 2017, 33, 7248-7255.	3.5	6
172	Transparent and stable photoluminescent sol–gel hybrid films by incorporating surface modified ZnO nanocrystals. Thin Solid Films, 2008, 516, 8507-8512.	1.8	5
173	Visualized Detection of Polyelectrolytes via 1D Photonic Crystals. Advanced Materials Interfaces, 2019, 6, 1801433.	3.7	5
174	Multifunctional Composites Obtained by Incorporating Nanocrystals into Decorated PVK Polymers. Journal of Nanomaterials, 2007, 2007, 1-7.	2.7	4
175	Responsive etalon based on PNIPAM@SiO ₂ composite spacer with rapid response rate and excellent repeatability for sensing application. Nanotechnology, 2015, 26, 285501.	2.6	4
176	Tuning the bandgap of graphene quantum dots by gold nanoparticle-assisted O2 plasma etching. RSC Advances, 2016, 6, 97853-97860.	3.6	4
177	Rationally designed particle-in-aperture hybrid arrays as large-scale, highly reproducible SERS substrates. Journal of Materials Chemistry C, 2017, 5, 11631-11639.	5.5	4
178	Au nanorods-sensitized 1DPC for visible detection of NIR light. Journal of Materials Chemistry C, 2017, 5, 2942-2950.	5.5	3
179	Preparation of fluorescent poly(methylmethacrylate) nano capsules via internal phase separation. E-Polymers, 2007, 7, .	3.0	2
180	Wrinkled single-layer graphenes fabricated by silicon nanopillar arrays. Nanotechnology, 2016, 27, 475304.	2.6	2

#	Article	IF	CITATIONS
181	Pressure-controlled microfluidic sub-picoliter ultramicro-volume syringes based on integrated micro-nanostructure arrays. Lab on A Chip, 2019, 19, 3368-3374.	6.0	2
182	Cover Picture: Luminescent One-Dimensional Nanoscale Materials with Ptllâ‹â‹â‹Ptll Interactions (Angew.)	Tj ET Qq0 () 0 ₁ rgBT /Ove
183	Self-assembling Behavior of Amphiphilic Copolymer Containing Cross-linked Hydrophilic Block in Ethanol. Chemical Research in Chinese Universities, 2007, 23, 101-104.	2.6	1
184	Synthesis and Characterization of CdTe Nanoparticle/Polymer Functional Composites. Journal of Nanoscience and Nanotechnology, 2009, 9, 7374-8.	0.9	1
185	Polymer pattern transformation and inorganic polygonal networks driven by thermal degradation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 162-168.	4.7	1
186	<title>Organic/inorganic nanocomposite materials for light-emitting applications</title> ., 1998, , .		0
187	A Simple Approach to Fabricate CdS-SiO2 Hybrid Microspheres by Producing CdS Nanoparticles on the Surface of Thiolated SiO2 Microspheres1. Chemical Research in Chinese Universities, 2006, 22, 76-79.	2.6	0
188	Inside Front Cover: A Universal Approach to Fabricate Various Nanoring Arrays Based on a Colloidal-Crystal-Assisted-Lithography Strategy (Adv. Funct. Mater. 24/2008). Advanced Functional Materials, 2008, 18, NA-NA.	14.9	0
189	Nanoparticles., 2004,,.		0
190	Nanoparticles. , 2008, , 2912-2922.		0
191	A sustained-release Trametinib bio-multifunction hydrogel inhibits orthodontically induced inflammatory root resorption. RSC Advances, 2022, 12, 16444-16453.	3.6	0