Richard M White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1964239/publications.pdf

Version: 2024-02-01

42 papers 2,995 citations

257450 24 h-index 302126 39 g-index

62 all docs 62 docs citations

times ranked

62

5343 citing authors

#	Article	IF	Citations
1	Anatomic position determines oncogenic specificity in melanoma. Nature, 2022, 604, 354-361.	27.8	44
2	Bioluminescent Zebrafish Transplantation Model for Drug Discovery. Frontiers in Pharmacology, 2022, 13, 893655.	3 . 5	5
3	Investigating the Metabolism of Melanocyte Development. FASEB Journal, 2022, 36, .	0.5	O
4	Drug-Eluting Rubber Bands for Tissue Ligation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27675-27685.	8.0	0
5	SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. ELife, 2021, 10, .	6.0	9
6	Unraveling the cartography of the cancer ecosystem. Genome Biology, 2021, 22, 87.	8.8	4
7	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
8	An in vivo reporter for tracking lipid droplet dynamics in transparent zebrafish. ELife, 2021, 10, .	6.0	18
9	Zebrafish as a New Model to Study the Crosstalk between Tumor and Host Metabolism. Trends in Cancer, 2021, 7, 661-663.	7.4	4
10	Developmental chromatin programs determine oncogenic competence in melanoma. Science, 2021, 373, eabc1048.	12.6	80
11	Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Developmental Cell, 2021, 56, 2808-2825.e10.	7.0	37
12	Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface. Nature Communications, 2021, 12, 6278.	12.8	112
13	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	3.8	8
14	The Stress-Like Cancer Cell State Is a Consistent Component of Tumorigenesis. Cell Systems, 2020, 11, 536-546.e7.	6.2	65
15	The Aged Microenvironment of Melanoma Feeds Escape from Targeted Therapy. Cancer Discovery, 2020, 10, 1255-1257.	9.4	O
16	Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. Advanced Therapeutics, 2020, 3, 2000028.	3.2	9
17	A Multiplex Human Pluripotent Stem Cell Platform Defines Molecular and Functional Subclasses of Autism-Related Genes. Cell Stem Cell, 2020, 27, 35-49.e6.	11.1	56
18	Regulation of the error-prone DNA polymerase Pol $\hat{\mathbb{I}}^2$ by oncogenic signaling and its contribution to drug resistance. Science Signaling, 2020, 13, .	3.6	26

#	Article	IF	CITATIONS
19	Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget, 2020, 11, 3621-3632.	1.8	29
20	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200
21	An IRAK1â€"PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nature Cell Biology, 2019, 21, 203-213.	10.3	38
22	Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	12
23	Modeling Cancer with Flies and Fish. Developmental Cell, 2019, 49, 317-324.	7.0	68
24	As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell Metabolism, 2018, 27, 428-438.e5.	16.2	220
25	Distant Insulin Signaling Regulates Vertebrate Pigmentation through the Sheddase Bace2. Developmental Cell, 2018, 45, 580-594.e7.	7.0	17
26	Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). DMM Disease Models and Mechanisms, 2018, 11, .	2.4	40
27	Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. Cancer Discovery, 2018, 8, 1006-1025.	9.4	248
28	Microenvironment-derived factors driving metastatic plasticity in melanoma. Nature Communications, 2017, 8, 14343.	12.8	119
29	Melanoma genome evolution across species. BMC Genomics, 2017, 18, 136.	2.8	12
30	A defect in the mitochondrial protein Mpv17 underlies the transparent casper zebrafish. Developmental Biology, 2017, 430, 11-17.	2.0	87
31	Tumor diversity and evolution revealed through RADseq. Oncotarget, 2017, 8, 41792-41805.	1.8	9
32	Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Molecular Cell, 2016, 62, 34-46.	9.7	71
33	Genomic Approaches to Zebrafish Cancer. Advances in Experimental Medicine and Biology, 2016, 916, 125-145.	1.6	5
34	A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science, 2016, 351, aad2197.	12.6	339
35	Cross-species oncogenomics using zebrafish models of cancer. Current Opinion in Genetics and Development, 2015, 30, 73-79.	3.3	13
36	A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Research, 2015, 75, 4272-4282.	0.9	113

#	Article	IF	CITATIONS
37	Zebrafish models of cancer: progress and future challenges. Current Opinion in Genetics and Development, 2014, 24, 38-45.	3.3	49
38	Zebrafish cancer: the state of the art and the path forward. Nature Reviews Cancer, 2013, 13, 624-636.	28.4	349
39	The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. Genome Biology, 2013, 14, R113.	9.6	40
40	Transplantation in Zebrafish. Methods in Cell Biology, 2011, 105, 403-417.	1.1	25
41	T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation. Cancer Cell, 2010, 18, 353-366.	16.8	141
42	Chemical genetic screening in the zebrafish embryo. Nature Protocols, 2009, 4, 1422-1432.	12.0	139