
Zhuangqiang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1962952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platinum-Decorated Gold Nanoparticles with Dual Functionalities for Ultrasensitive Colorimetric in Vitro Diagnostics. Nano Letters, 2017, 17, 5572-5579.	9.1	235
2	High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Applied Materials & Interfaces, 2014, 6, 18243-18250.	8.0	217
3	Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules. Analytical Chemistry, 2013, 85, 6945-6952.	6.5	209
4	Facile Synthesis of Enhanced Fluorescent Gold–Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity. Analytical Chemistry, 2016, 88, 8886-8892.	6.5	190
5	Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Analytica Chimica Acta, 2013, 776, 79-86.	5.4	163
6	Enhanced Colorimetric Immunoassay Accompanying with Enzyme Cascade Amplification Strategy for Ultrasensitive Detection of Low-Abundance Protein. Scientific Reports, 2014, 4, 3966.	3.3	137
7	Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosensors and Bioelectronics, 2015, 70, 194-201.	10.1	133
8	Tyramine-Based Enzymatic Conjugate Repeats for Ultrasensitive Immunoassay Accompanying Tyramine Signal Amplification with Enzymatic Biocatalytic Precipitation. Analytical Chemistry, 2014, 86, 8352-8358.	6.5	127
9	Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads. Biosensors and Bioelectronics, 2013, 46, 37-43.	10.1	117
10	Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification. Biosensors and Bioelectronics, 2016, 79, 411-415.	10.1	102
11	Hybridization chain reaction-based colorimetric aptasensor of adenosine 5′-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Biosensors and Bioelectronics, 2017, 89, 1006-1012.	10.1	100
12	Facile Colorimetric Detection of Silver Ions with Picomolar Sensitivity. Analytical Chemistry, 2017, 89, 3622-3629.	6.5	98
13	Target-Induced Nanocatalyst Deactivation Facilitated by Core@Shell Nanostructures for Signal-Amplified Headspace-Colorimetric Assay of Dissolved Hydrogen Sulfide. Analytical Chemistry, 2015, 87, 10153-10160.	6.5	93
14	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	9.1	85
15	High-index {hk0} faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst, The, 2017, 142, 911-917.	3.5	78
16	Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles. Biosensors and Bioelectronics, 2016, 86, 978-984.	10.1	72
17	Multifunctional Gold–Silica Nanostructures for Ultrasensitive Electrochemical Immunoassay of Streptomycin Residues. ACS Applied Materials & Interfaces, 2011, 3, 4668-4676.	8.0	69
18	Hemin/G-quadruplex-based DNAzyme concatamers for in situ amplified impedimetric sensing of copper(II) ion coupling with DNAzyme-catalyzed precipitation strategy. Biosensors and Bioelectronics, 2015, 74, 1-7.	10.1	69

ZHUANGQIANG GAO

#	Article	IF	CITATIONS
19	DNAzyme-functionalized gold–palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor. Biosensors and Bioelectronics, 2014, 54, 365-371.	10.1	67
20	Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosensors and Bioelectronics, 2013, 47, 149-156.	10.1	63
21	Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction. Chemical Communications, 2012, 48, 12207.	4.1	62
22	Nanoparticle-based pseudo hapten for target-responsive cargo release from a magnetic mesoporous silica nanocontainer. Chemical Communications, 2014, 50, 6256.	4.1	59
23	Nanogold-enhanced graphene nanosheets as multienzyme assembly for sensitive detection of low-abundanceproteins. Biosensors and Bioelectronics, 2013, 44, 108-114.	10.1	46
24	Morphology-Invariant Metallic Nanoparticles with Tunable Plasmonic Properties. ACS Nano, 2021, 15, 2428-2438.	14.6	44
25	Template Regeneration in Galvanic Replacement: A Route to Highly Diverse Hollow Nanostructures. ACS Nano, 2020, 14, 791-801.	14.6	38
26	Nanoplasmonic Sandwich Immunoassay for Tumor-Derived Exosome Detection and Exosomal PD-L1 Profiling. ACS Sensors, 2021, 6, 3308-3319.	7.8	35
27	Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly(vinyl) Tj ETQq1 1 C Mikrochimica Acta, 2017, 184, 807-814.).784314 ı 5.0	rgBT /Overloc 33
28	Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients. ACS Nano, 2021, 15, 18023-18036.	14.6	33
29	A non-enzyme cascade amplification strategy for colorimetric assay of disease biomarkers. Chemical Communications, 2017, 53, 9055-9058.	4.1	25
30	Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Mikrochimica Acta, 2015, 182, 449-454.	5.0	18
31	Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosensors and Bioelectronics, 2022, 212, 114423.	10.1	17
32	Peroxidase-AgAu hybrid nanocages as signal transducers for sensitive plasmonic colorimetric sensing. Journal of Materials Chemistry C, 2019, 7, 15179-15187.	5.5	7
33	Ultrafast and sensitive colorimetric detection of ascorbic acid with Pd-Pt core-shell nanostructure as peroxidase mimic. Sensors International, 2020, 1, 100031.	8.4	7