Maria del Mar Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1962743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel, 2006, 85, 625-634.	6.4	224
2	Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cement and Concrete Composites, 2014, 53, 279-288.	10.7	189
3	Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel, 2006, 85, 1960-1969.	6.4	181
4	Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 2018, 85, 22-31.	10.7	151
5	Compatibility between polycarboxylate-based admixtures and blended-cement pastes. Cement and Concrete Composites, 2013, 35, 151-162.	10.7	139
6	Alkali-activated mortars: Workability and rheological behaviour. Construction and Building Materials, 2017, 145, 576-587.	7.2	95
7	Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cement and Concrete Composites, 2019, 95, 277-284.	10.7	74
8	Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 45-57.	1.9	71
9	Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties. Cement and Concrete Research, 2021, 140, 106302.	11.0	66
10	Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, radiology and leaching behaviour. Cement and Concrete Composites, 2019, 104, 103384.	10.7	58
11	Adsorption of PCE and PNS superplasticisers on cubic and orthorhombic C3A. Effect of sulfate. Construction and Building Materials, 2015, 78, 324-332.	7.2	43
12	Viscosity and water demand of limestone- and fly ash-blended cement pastes in the presence of superplasticisers. Construction and Building Materials, 2013, 48, 417-423.	7.2	42
13	Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Construction and Building Materials, 2018, 159, 745-754.	7.2	31
14	Decalcification of alkali-activated slag pastes. Effect of the chemical composition of the slag. Materials and Structures/Materiaux Et Constructions, 2015, 48, 541-555.	3.1	25
15	Radiological characterization of anhydrous/hydrated cements and geopolymers. Construction and Building Materials, 2015, 101, 1105-1112.	7.2	25
16	Use of Genie 2000 and Excel VBA to correct for Î ³ -ray interference in the determination of NORM building material activity concentrations. Applied Radiation and Isotopes, 2018, 142, 1-7.	1.5	25
17	Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste. Radiation Physics and Chemistry, 2020, 171, 108709.	2.8	24
18	Effect of Polycarboxylate–Ether Admixtures on Calcium Aluminate Cement Pastes. Part 1: Compatibility Studies. Industrial & Engineering Chemistry Research, 2013, 52, 17323-17329.	3.7	20

Maria del Mar Alonso

#	Article	IF	CITATIONS
19	Rheological behaviour of gypsum plaster pastes with polyamide powder wastes. Construction and Building Materials, 2013, 38, 407-412.	7.2	19
20	Assessment of parameters governing the steel fiber alignment in fresh cement-based composites. Construction and Building Materials, 2019, 207, 548-562.	7.2	16
21	Effect of Polycarboxylate–Ether Admixtures on Calcium Aluminate Cement Pastes. Part 2: Hydration Studies. Industrial & Engineering Chemistry Research, 2013, 52, 17330-17340.	3.7	14
22	NORM waste, cements, and concretes. A review. Materiales De Construccion, 2021, 71, e259.	0.7	10
23	Viability of the use of construction and demolition waste aggregates in alkali-activated mortars. Materiales De Construccion, 2018, 68, 164.	0.7	9
24	Radiological behaviour of pigments and water repellents in cement-based mortars. Construction and Building Materials, 2019, 225, 879-885.	7.2	8
25	Data on natural radionuclide's activity concentration of cement-based materials. Data in Brief, 2020, 33, 106488.	1.0	8
26	Rheology of Alkali-Activated Mortars: Influence of Particle Size and Nature of Aggregates. Minerals (Basel, Switzerland), 2020, 10, 726.	2.0	7
27	PCE and BNS admixture adsorption in sands with different composition and particle size distribution. Materiales De Construccion, 2017, 67, 121.	0.7	7
28	Hybrid Cements: Mechanical Properties, Microstructure and Radiological Behavior. Molecules, 2022, 27, 498.	3.8	7
29	Reuse of urban and industrial waste glass as a novel activator for alkali-activated slag cement pastes: a case study. , 2015, , 75-109.		6
30	Effect of particle size and composition of granitic sands on the radiological behaviour of mortars. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 561-573.	1.9	6
31	New Approach for the Determination of Radiological Parameters on Hardened Cement Pastes with Coal Fly Ash. Materials, 2021, 14, 475.	2.9	5
32	Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand. Materials, 2021, 14, 5656.	2.9	3
33	Characteristic limits of 230Th in alpha spectrometry with 229Th as tracer, calculated by simulating interfering tails and overlapping peaks. Applied Radiation and Isotopes, 2020, 160, <u>109097</u> .	1.5	0