Kerstin G Blank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196256/publications.pdf

Version: 2024-02-01

172457 214800 2,331 64 29 47 citations h-index g-index papers 66 66 66 3234 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mechanische VerstÃrkung von Coiled Coils mit Lactam und Histidinâ€Metallâ€Klammern. Angewandte Chemie, 2021, 133, 234-239.	2.0	3
2	Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angewandte Chemie - International Edition, 2021, 60, 6488-6495.	13.8	8
3	Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angewandte Chemie, 2021, 133, 6562-6569.	2.0	1
4	Fortified Coiled Coils: Enhancing Mechanical Stability with Lactam or Metal Staples. Angewandte Chemie - International Edition, 2021, 60, 232-236.	13.8	14
5	Monitoring Changes in Biochemical and Biomechanical Properties of Collagenous Tissues Using Label-Free and Nondestructive Optical Imaging Techniques. Analytical Chemistry, 2021, 93, 3813-3821.	6.5	13
6	Sequence-specific response of collagen-mimetic peptides to osmotic pressure. MRS Bulletin, 2021, 46, 889-901.	3.5	4
7	Adaptation of <i>Escherichia coli</i> Biofilm Growth, Morphology, and Mechanical Properties to Substrate Water Content. ACS Biomaterials Science and Engineering, 2021, 7, 5315-5325.	5.2	14
8	Magnetite-binding proteins from the magnetotactic bacterium Desulfamplus magnetovallimortis BW-1. Nanoscale, 2021, 13, 20396-20400.	5.6	4
9	Influence of Network Topology on the Viscoelastic Properties of Dynamically Crosslinked Hydrogels. Frontiers in Chemistry, 2020, 8, 536.	3.6	11
10	Editorial: Synthesis of Novel Hydrogels With Unique Mechanical Properties. Frontiers in Chemistry, 2020, 8, 595392.	3.6	2
11	Extremely Compressible Hydrogel via Incorporation of Modified Graphitic Carbon Nitride. Macromolecular Rapid Communications, 2019, 40, e1800712.	3.9	23
12	Decoding Biomineralization: Interaction of a Mad10-Derived Peptide with Magnetite Thin Films. Nano Letters, 2019, 19, 8207-8215.	9.1	9
13	Structural determinants of coiled coil mechanics. Physical Chemistry Chemical Physics, 2019, 21, 9145-9149.	2.8	20
14	Bioinspired Histidine–Zn2+ Coordination for Tuning the Mechanical Properties of Self-Healing Coiled Coil Cross-Linked Hydrogels. Biomimetics, 2019, 4, 25.	3.3	41
15	BMPR2 acts as aÂgatekeeper to protect endothelial cells from increased TGFβÂresponses and altered cell mechanics. PLoS Biology, 2019, 17, e3000557.	5.6	71
16	Molecular mechanics of coiled coils loaded in the shear geometry. Chemical Science, 2018, 9, 4610-4621.	7.4	48
17	Deciphering Design Principles of Förster Resonance Energy Transfer-Based Protease Substrates: Thermolysin-Like Protease from Geobacillus stearothermophilus as a Test Case. ACS Omega, 2018, 3, 4148-4156.	3.5	7
18	Trimeric coiled coils expand the range of strength, toughness and dynamics of coiled coil motifs under shear. Physical Chemistry Chemical Physics, 2018, 20, 29105-29115.	2.8	11

#	Article	IF	CITATIONS
19	Tuning coiled coil stability with histidine-metal coordination. Nanoscale, 2018, 10, 22725-22729.	5.6	29
20	Goodness of fit testing in dynamic single-molecule force spectroscopy. Journal of Chemical Physics, 2018, 149, 244120.	3.0	4
21	Catalytic single-chain polymeric nanoparticles at work: from ensemble towards single-particle kinetics. Molecular Systems Design and Engineering, 2018, 3, 609-618.	3.4	36
22	Cytokineâ€Functionalized Synthetic Dendritic Cells for TÂCell Targeted Immunotherapies. Advanced Therapeutics, 2018, 1, 1800021.	3.2	25
23	Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect. ACS Omega, 2017, 2, 937-945.	3.5	48
24	Affinity-Based Purification of Polyisocyanopeptide Bioconjugates. Bioconjugate Chemistry, 2017, 28, 2560-2568.	3.6	11
25	Molecular Force Sensors: From Fundamental Concepts toward Applications in Cell Biology. Advanced Materials Interfaces, 2017, 4, 1600441.	3.7	30
26	Genetically Engineered Organization: Protein Template, Biological Recognition Sites, and Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1600285.	3.7	5
27	Mechanische Reversibilitäder spannungskatalysierten Azidâ€Alkinâ€Cycloaddition. Angewandte Chemie, 2016, 128, 2950-2953.	2.0	6
28	Electrical Monitoring of sp ³ Defect Formation in Individual Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 1971-1976.	3.1	40
29	DNAâ€Responsive Polyisocyanopeptide Hydrogels with Stressâ€Stiffening Capacity. Advanced Functional Materials, 2016, 26, 9075-9082.	14.9	42
30	Mechanical Reversibility of Strainâ€Promoted Azide–Alkyne Cycloaddition Reactions. Angewandte Chemie - International Edition, 2016, 55, 2899-2902.	13.8	32
31	Protein Conformational Motions: Enzyme Catalysis. , 2016, , 45-70.		0
32	Abstract IA29: Towards synthetic immune cells for cancer immunotherapy., 2016,,.		0
33	Interfacial Activation of <i>Candida antarctica</i> Lipase B: Combined Evidence from Experiment and Simulation. Biochemistry, 2015, 54, 5969-5979.	2.5	112
34	Polymer-Based Synthetic Dendritic Cells for Tailoring Robust and Multifunctional T Cell Responses. ACS Chemical Biology, 2015, 10, 485-492.	3.4	43
35	Joining forces: integrating the mechanical and optical single molecule toolkits. Chemical Science, 2014, 5, 1680-1697.	7.4	18
36	Singleâ€enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Letters, 2014, 588, 3553-3563.	2.8	15

#	Article	IF	CITATIONS
37	Therapeutic nanoworms: towards novel synthetic dendritic cells for immunotherapy. Chemical Science, 2013, 4, 4168.	7.4	91
38	Single Enzyme Activity Detected with a Nanoelectronic Sensor. Biophysical Journal, 2013, 104, 518a.	0.5	0
39	Stiffness versus architecture of single helical polyisocyanopeptides. Chemical Science, 2013, 4, 2357.	7.4	28
40	Single Molecule Enzyme Catalysis: Steps towards Accurate Kinetic Schemes. Biophysical Journal, 2013, 104, 372a.	0.5	0
41	Time-Resolved Single Molecule Fluorescence Spectroscopy of an α-Chymotrypsin Catalyzed Reaction. Journal of Physical Chemistry B, 2013, 117, 1252-1260.	2.6	17
42	Electrical Characteristics of Carbon Nanotube Devices Prepared with Single Oxidative Point Defects. Journal of Physical Chemistry C, 2012, 116, 1961-1965.	3.1	8
43	Dynamic Disorder in Single-Enzyme Experiments: Facts and Artifacts. ACS Nano, 2012, 6, 346-354.	14.6	55
44	Catalytic capsids: the art of confinement. Chemical Science, 2011, 2, 358-362.	7.4	147
45	Morpholinecarbonyl-Rhodamine 110 Based Substrates for the Determination of Protease Activity with Accurate Kinetic Parameters. Bioconjugate Chemistry, 2011, 22, 1932-1938.	3.6	15
46	Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nature Protocols, 2010, 5, 975-985.	12.0	149
47	Single-Biomolecule Kinetics: The Art of Studying a Single Enzyme. Annual Review of Analytical Chemistry, 2010, 3, 319-340.	5.4	47
48	Watching Individual Enzymes at Work. Springer Series in Chemical Physics, 2010, , 495-511.	0.2	2
49	Fluorescenceâ€based analysis of enzymes at the singleâ€molecule level. Biotechnology Journal, 2009, 4, 465-479.	3.5	35
50	Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab on A Chip, 2009, 9, 1344-1348.	6.0	146
51	Triggering Enzymatic Activity with Force. Nano Letters, 2009, 9, 3290-3295.	9.1	56
52	Force-based Analysis of Multidimensional Energy Landscapes: Application of Dynamic Force Spectroscopy and Steered Molecular Dynamics Simulations to an Antibody Fragment–Peptide Complex. Journal of Molecular Biology, 2008, 381, 1253-1266.	4.2	48
53	Force-Induced DNA Slippage. Biophysical Journal, 2007, 92, 2491-2497.	0.5	44
54	B-S Transition in Short Oligonucleotides. Biophysical Journal, 2007, 93, 2400-2409.	0.5	73

#	Article	lF	CITATIONS
55	Affinity-Matured Recombinant Antibody Fragments Analyzed by Single-Molecule Force Spectroscopy. Biophysical Journal, 2007, 93, 3583-3590.	0.5	73
56	Functional expression of Candida antarctica lipase B in Eschericha coli. Journal of Biotechnology, 2006, 125, 474-483.	3.8	75
57	Site-Specific Immobilization of Genetically Engineered Variants of Candida antarctica Lipase B. ChemBioChem, 2006, 7, 1349-1351.	2.6	34
58	Covalent immobilization of recombinant fusion proteins with hAGT for single molecule force spectroscopy. European Biophysics Journal, 2005, 35, 72-78.	2.2	47
59	Double-chip protein arrays: force-based multiplex sandwich immunoassays with increased specificity. Analytical and Bioanalytical Chemistry, 2004, 379, 974-81.	3.7	19
60	Double chip protein arrays using recombinant single-chain Fv antibody fragments. Proteomics, 2004, 4, 1417-1420.	2.2	14
61	DNA: A Programmable Force Sensor. Science, 2003, 301, 367-370.	12.6	167
62	A force-based protein biochip. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11356-11360.	7.1	59
63	Self-Immobilizing Recombinant Antibody Fragments for Immunoaffinity Chromatography: Generic, Parallel, and Scalable Protein Purification. Protein Expression and Purification, 2002, 24, 313-322.	1.3	36
64	Crystal Structure of the Anti-His Tag Antibody 3D5 Single-chain Fragment Complexed to its Antigen. Journal of Molecular Biology, 2002, 318, 135-147.	4.2	46