
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1961973/publications.pdf Version: 2024-02-01

YII HAN

#	Article	IF	CITATIONS
1	Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes. International Journal of Molecular Sciences, 2022, 23, 1456.	4.1	41
2	Structure-activity relationship of carbon nitride dots in inhibiting Tau aggregation. Carbon, 2022, 193, 1-16.	10.3	20
3	Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors. Carbon, 2022, 192, 198-208.	10.3	69
4	Drug delivery of memantine with carbon dots for Alzheimer's disease: blood–brain barrier penetration and inhibition of tau aggregation. Journal of Colloid and Interface Science, 2022, 617, 20-31.	9.4	35
5	Development of Red-Emissive Carbon Dots for Bioimaging through a Building Block Approach: Fundamental and Applied Studies. Bioconjugate Chemistry, 2022, 33, 226-237.	3.6	11
6	DFMO Carbon Dots for Treatment of Neuroblastoma and Bioimaging. ACS Applied Bio Materials, 2022, 5, 3300-3309.	4.6	6
7	Chalcones as Anti-Glioblastoma Stem Cell Agent Alone or as Nanoparticle Formulation Using Carbon Dots as Nanocarrier. Pharmaceutics, 2022, 14, 1465.	4.5	7
8	A deep investigation into the structure of carbon dots. Carbon, 2021, 173, 433-447.	10.3	128
9	Dual targeting nano-approaches for Alzheimer's disease etiology. Neural Regeneration Research, 2021, 16, 119.	3.0	4
10	In vivo characterization of carbon dots–bone interactions: toward the development of bone-specific nanocarriers for drug delivery. Drug Delivery, 2021, 28, 1281-1289.	5.7	9
11	Crossing the blood–brain barrier with carbon dots: uptake mechanism and <i>in vivo</i> cargo delivery. Nanoscale Advances, 2021, 3, 3942-3953.	4.6	34
12	Photosynthesis Enhancement in Maize via Nontoxic Orange Carbon Dots. Journal of Agricultural and Food Chemistry, 2021, 69, 5446-5451.	5.2	29
13	Metformin derived carbon dots: Highly biocompatible fluorescent nanomaterials as mitochondrial targeting and blood-brain barrier penetrating biomarkers. Journal of Colloid and Interface Science, 2021, 592, 485-497.	9.4	47
14	Fluorescent nanoparticles as tools in ecology and physiology. Biological Reviews, 2021, 96, 2392-2424.	10.4	13
15	Carbon Dots: A Future Blood–Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier. International Journal of Nanomedicine, 2021, Volume 16, 5003-5016.	6.7	64
16	Gel-like carbon dots: A high-performance future photocatalyst. Journal of Colloid and Interface Science, 2021, 599, 519-532.	9.4	22
17	The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188621.	7.4	23
18	pH and redox triggered doxorubicin release from covalently linked carbon dots conjugates. Nanoscale, 2021, 13, 5507-5518.	5.6	22

#	Article	IF	CITATIONS
19	Optimized Doxorubicin Chemotherapy for Diffuse Large B-cell Lymphoma Exploits Nanocarrier Delivery to Transferrin Receptors. Cancer Research, 2021, 81, 763-775.	0.9	13
20	Drug Loading of Anthracycline Antibiotics on Carbon Dots Using Circular Dichroism Spectrometry. Analytical Chemistry, 2021, 93, 14773-14777.	6.5	5
21	Facile Synthesis of "Boron-Doped―Carbon Dots and Their Application in Visible-Light-Driven Photocatalytic Degradation of Organic Dyes. Nanomaterials, 2020, 10, 1560.	4.1	40
22	Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sensors, 2020, 5, 2724-2741.	7.8	266
23	Direct conjugation of distinct carbon dots as Lego-like building blocks for the assembly of versatile drug nanocarriers. Journal of Colloid and Interface Science, 2020, 576, 412-425.	9.4	35
24	Bone Tissue Engineering via Carbonâ€Based Nanomaterials. Advanced Healthcare Materials, 2020, 9, e1901495.	7.6	111
25	Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied Materials Today, 2020, 20, 100677.	4.3	69
26	Nanoparticle-mediated approaches for Alzheimer's disease pathogenesis, diagnosis, and therapeutics. Journal of Controlled Release, 2019, 314, 125-140.	9.9	43
27	Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids and Surfaces B: Biointerfaces, 2019, 176, 488-493.	5.0	71
28	Carbon Dots: Diverse Preparation, Application, and Perspective in Surface Chemistry. Langmuir, 2019, 35, 9115-9132.	3.5	70
29	Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 419-433.	7.4	151
30	Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale, 2019, 11, 6192-6205.	5.6	184
31	Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Applied Catalysis B: Environmental, 2019, 248, 157-166.	20.2	165
32	Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11, 4634-4652.	5.6	301
33	Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale, 2019, 11, 22387-22397.	5.6	83
34	Carbon Nitride Dots: A Selective Bioimaging Nanomaterial. Bioconjugate Chemistry, 2019, 30, 111-123.	3.6	62
35	Quantification of Nucleic Acid Concentration in the Nanoparticle or Polymer Conjugates Using Circular Dichroism Spectroscopy. Analytical Chemistry, 2018, 90, 2255-2262.	6.5	8
36	Crossing the blood-brain barrier with nanoparticles. Journal of Controlled Release, 2018, 270, 290-303.	9.9	512

#	Article	IF	CITATIONS
37	Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer's Disease Treatment. ACS Chemical Neuroscience, 2018, 9, 198-210.	3.5	60
38	Photoinduced Electron Transfer in Carbon Dots with Long-Wavelength Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 29507-29515.	3.1	44
39	Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase. Analytica Chimica Acta, 2018, 1041, 114-121.	5.4	45
40	Embedding Carbon Dots in Superabsorbent Polymers for Additive Manufacturing. Polymers, 2018, 10, 921.	4.5	39
41	Photoluminescent Carbon Dots: A Mixture of Heterogeneous Fractions. ChemPhysChem, 2018, 19, 2589-2597.	2.1	49
42	Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules, 2018, 23, 378.	3.8	173
43	Ultrasensitive Plasmonic Biosensors for Real-Time Parallel Detection of Alpha-L-Fucosidase and Cardiac-Troponin-I in Whole Human Blood. Analytical Chemistry, 2018, 90, 7795-7799.	6.5	15
44	Gelâ€like Carbon Dots: Characterization and their Potential Applications. ChemPhysChem, 2017, 18, 890-897.	2.1	48
45	Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coordination Chemistry Reviews, 2017, 343, 256-277.	18.8	312
46	Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale, 2017, 9, 17533-17543.	5.6	118
47	Biocompatible and blood–brain barrier permeable carbon dots for inhibition of Aβ fibrillation and toxicity, and BACE1 activity. Nanoscale, 2017, 9, 12862-12866.	5.6	64
48	The Investigation on Resorcinarenes towards either Inhibiting or Promoting Insulin Fibrillation. Chemistry - A European Journal, 2017, 23, 17903-17907.	3.3	14
49	A resorcinarene for inhibition of $\hat{Al^2}$ fibrillation. Chemical Science, 2017, 8, 2003-2009.	7.4	44
50	Polymers in Carbon Dots: A Review. Polymers, 2017, 9, 67.	4.5	112
51	Rheology of a carbon dot gel. Inorganica Chimica Acta, 2017, 468, 119-124.	2.4	13
52	Interactions between Carbon Nanomaterials and Biomolecules. Journal of Oleo Science, 2016, 65, 1-7.	1.4	52
53	Crossing the blood–brain–barrier with transferrin conjugated carbon dots: A zebrafish model study. Colloids and Surfaces B: Biointerfaces, 2016, 145, 251-256.	5.0	99
54	"Dark―carbon dots specifically "light-up―calcified zebrafish bones. Journal of Materials Chemistry B, 2016, 4, 7398-7405.	5.8	42

#	Article	IF	CITATIONS
55	Determination of the composition, encapsulation efficiency and loading capacity in protein drug delivery systems using circular dichroism spectroscopy. Analytica Chimica Acta, 2016, 937, 113-118.	5.4	46
56	Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale, 2016, 8, 16662-16669.	5.6	175
57	Recent Development of Cardiac Troponin I Detection. ACS Sensors, 2016, 1, 106-114.	7.8	131
58	Interactions between Graphene Oxide and Biomolecules from Surface Chemistry and Spectroscopy. ACS Symposium Series, 2015, , 43-64.	0.5	5
59	Nontoxic Carbon Dots Potently Inhibit Human Insulin Fibrillation. Chemistry of Materials, 2015, 27, 1764-1771.	6.7	167
60	Method To Determine Protein Concentration in the Protein–Nanoparticle Conjugates Aqueous Solution Using Circular Dichroism Spectroscopy. Analytical Chemistry, 2015, 87, 6455-6459.	6.5	88
61	Extended Charge Carrier Lifetimes in Hierarchical Donor–Acceptor Supramolecular Polymer Films. Journal of Physical Chemistry C, 2015, 119, 19584-19589.	3.1	25
62	Carbohydrate nanotechnology: hierarchical assembly using nature's other information carrying biopolymers. Current Opinion in Biotechnology, 2015, 34, 41-47.	6.6	33
63	Beam pen lithography as a new tool for spatially controlled photochemistry, and its utilization in the synthesis of multivalent glycan arrays. Chemical Science, 2014, 5, 2023.	7.4	65
64	Reactions in Elastomeric Nanoreactors Reveal the Role of Force on the Kinetics of the Huisgen Reaction on Surfaces. Journal of the American Chemical Society, 2014, 136, 10553-10556.	13.7	37
65	Preparation of polystyrene-supported Lewis acidic Fe(III) ionic liquid and its application in catalytic conversion of carbon dioxide. Tetrahedron, 2012, 68, 3835-3842.	1.9	68