List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1961093/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Design of Quasiâ€MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2105541.	21.0	87
2	Ferric sauce for potassium-ion battery. Nature Sustainability, 2022, 5, 183-184.	23.7	2
3	Evidence of Morphological Change in Sulfur Cathodes upon Irradiation by Synchrotron X-rays. ACS Energy Letters, 2022, 7, 577-582.	17.4	7
4	Design of Quasiâ€MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for Highâ€Performance Lithium–Sulfur Batteries (Adv. Mater. 2/2022). Advanced Materials, 2022, 34, .	21.0	0
5	Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chemical Society Reviews, 2022, 51, 2917-2938.	38.1	65
6	An Ultrafast, Durable, and High‣oading Polymer Anode for Aqueous Zincâ€Ion Batteries and Supercapacitors. Advanced Materials, 2022, 34, e2200077.	21.0	60
7	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	19.5	33
8	Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nature Catalysis, 2022, 5, 555-563.	34.4	198
9	Highly Stable Low-Cost Electrochemical Gas Sensor with an Alcohol-Tolerant N,S-Codoped Non-Precious Metal Catalyst Air Cathode. ACS Sensors, 2021, 6, 752-763.	7.8	7
10	Cationic–anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 2325-2333.	10.3	20
11	<i>In Situ</i> Localized Polysulfide Injector for the Activation of Bulk Lithium Sulfide. Journal of the American Chemical Society, 2021, 143, 2185-2189.	13.7	31
12	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nature Communications, 2021, 12, 186.	12.8	163
13	Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nature Energy, 2021, 6, 277-286.	39.5	255
14	Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy, 2021, 6, 378-387.	39.5	282
15	Nanotechnology for Sulfur Cathodes. ACS Nano, 2021, 15, 8087-8094.	14.6	29
16	Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials, 2021, 11, 2100332.	19.5	143
17	Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano Energy, 2021, 83, 105734.	16.0	41
18	Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications, 2021, 12, 3288.	12.8	35

#	Article	IF	CITATIONS
19	Chemical Heterointerface Engineering on Hybrid Electrode Materials for Electrochemical Energy Storage. Small Methods, 2021, 5, e2100444.	8.6	62
20	Role of Lithium Doping in P2-Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ for Sodium-Ion Batteries. Chemistry of Materials, 2021, 33, 4445-4455.	6.7	56
21	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	11.2	95
22	(S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 5186-5193.	5.9	20
23	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie, 2020, 132, 2478-2485.	2.0	5
24	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie - International Edition, 2020, 59, 2457-2464.	13.8	53
25	Functionalized separator for next-generation batteries. Materials Today, 2020, 41, 143-155.	14.2	87
26	Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2020, 59, 22978-22982.	13.8	29
27	A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585, 63-67.	27.8	326
28	Engineering Solvation Complex–Membrane Interaction to Suppress Cation Crossover in 3 V Cuâ€Al Battery. Small, 2020, 16, 2003438.	10.0	11
29	Titelbild: Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries (Angew. Chem.) Tj ETo	Qq110.7	84314 rgBT /
30	Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie, 2020, 132, 23178-23182.	2.0	8
31	Rational Design of a Ni ₃ N _{0.85} Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 6673-6682.	14.6	212
32	Activating Li ₂ S as the Lithium-Containing Cathode in Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 2234-2245.	17.4	125
33	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	19.5	109
34	Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb ₂ O _{5–<i>x</i>} Nanocluster toward Superior Li–S Performance. ACS Nano, 2020, 14, 4849-4860.	14.6	201
35	Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. Nature Communications, 2020, 11, 1212.	12.8	64
36	Oxygen-Based Anion Redox for Lithium Batteries. Accounts of Chemical Research, 2020, 53, 1436-1444.	15.6	21

#	Article	IF	CITATIONS
37	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	48.7	284
38	Cationic and anionic redox in lithium-ion based batteries. Chemical Society Reviews, 2020, 49, 1688-1705.	38.1	152
39	Cobalt in lithium-ion batteries. Science, 2020, 367, 979-980.	12.6	280
40	Strain-Modulated Platinum–Palladium Nanowires for Oxygen Reduction Reaction. Nano Letters, 2020, 20, 2416-2422.	9.1	70
41	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€6upercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	19.5	36
42	New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.	47.7	554
43	Bambooâ€Like Nitrogenâ€Doped Carbon Nanotube Forests as Durable Metalâ€Free Catalysts for Selfâ€Powered Flexible Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e1903852.	21.0	141
44	Selective Growth of a Discontinuous Subnanometer Pd Film on Carbon Defects for Li–O ₂ Batteries. ACS Energy Letters, 2019, 4, 2782-2786.	17.4	50
45	Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nature Communications, 2019, 10, 4721.	12.8	182
46	Li–CO ₂ Batteries: Bambooâ€Like Nitrogenâ€Doped Carbon Nanotube Forests as Durable Metalâ€Free Catalysts for Selfâ€Powered Flexible Li–CO ₂ Batteries (Adv. Mater. 39/2019). Advanced Materials, 2019, 31, 1970279.	21.0	24
47	Silica Restricting the Sulfur Volatilization of Nickel Sulfide for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901153.	19.5	94
48	Exploring the charge reactions in a Li–O ₂ system with lithium oxide cathodes and nonaqueous electrolytes. Journal of Materials Chemistry A, 2019, 7, 15615-15620.	10.3	6
49	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	19.5	865
50	Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte. Nature Communications, 2019, 10, 1890.	12.8	49
51	In Situ Engineering of Intracellular Hemoglobin for Implantable Highâ€Performance Biofuel Cells. Angewandte Chemie - International Edition, 2019, 58, 6663-6668.	13.8	19
52	Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy, 2019, 59, 636-643.	16.0	83
53	Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900228.	19.5	177
54	Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for high-energy-density lithium-ion battery anode. Electrochimica Acta, 2019, 309, 157-165.	5.2	29

#	Article	IF	CITATIONS
55	In Situ Engineering of Intracellular Hemoglobin for Implantable Highâ€Performance Biofuel Cells. Angewandte Chemie, 2019, 131, 6735-6740.	2.0	10
56	Interlayer Material Selection for Lithium-Sulfur Batteries. Joule, 2019, 3, 361-386.	24.0	406
57	Bridging the academic and industrial metrics for next-generation practical batteries. Nature Nanotechnology, 2019, 14, 200-207.	31.5	420
58	The Absence and Importance of Operando Techniques for Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1805609.	21.0	25
59	Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nature Communications, 2019, 10, 73.	12.8	291
60	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie - International Edition, 2019, 58, 2397-2401.	13.8	178
61	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie, 2019, 131, 2419-2423.	2.0	34
62	Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1705590.	21.0	456
63	Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nature Communications, 2018, 9, 705.	12.8	207
64	Controllable Urchin‣ike NiCo ₂ S ₄ Microsphere Synergized with Sulfurâ€Doped Graphene as Bifunctional Catalyst for Superior Rechargeable Zn–Air Battery. Advanced Functional Materials, 2018, 28, 1706675.	14.9	203
65	Siliconâ€Based Anodes for Lithiumâ€ion Batteries: From Fundamentals to Practical Applications. Small, 2018, 14, 1702737.	10.0	650
66	A Lithium–Sulfur Battery using a 2D Current Collector Architecture with a Largeâ€5ized Sulfur Host Operated under High Areal Loading and Low E/S Ratio. Advanced Materials, 2018, 30, e1804271.	21.0	74
67	The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews, 2018, 1, 461-482.	25.5	215
68	Construction of Hierarchically Porous Nanoparticles@Metal–Organic Frameworks Composites by Inherent Defects for the Enhancement of Catalytic Efficiency. Advanced Materials, 2018, 30, e1803263.	21.0	88
69	Conformal formation of Carbon-TiOX matrix encapsulating silicon for high-performance lithium-ion battery anode. Journal of Power Sources, 2018, 399, 98-104.	7.8	4
70	Li ₂ S―or Sâ€Based Lithiumâ€ŀon Batteries. Advanced Materials, 2018, 30, e1801190.	21.0	54
71	30 Years of Lithiumâ€ion Batteries. Advanced Materials, 2018, 30, e1800561.	21.0	3,039
72	Hair-based flexible knittable supercapacitor with wide operating voltage and ultra-high rate capability. Nano Energy, 2017, 34, 491-499.	16.0	62

#	Article	IF	CITATIONS
73	Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 24159-24167.	10.3	28
74	Green Solid Electrolyte with Cofunctionalized Nanocellulose/Graphene Oxide Interpenetrating Network for Electrochemical Gas Sensors. Small Methods, 2017, 1, 1700237.	8.6	58
75	Compact high volumetric and areal capacity lithium sulfur batteries through rock salt induced nano-architectured sulfur hosts. Journal of Materials Chemistry A, 2017, 5, 21435-21441.	10.3	45
76	Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc–air batteries. Nanoscale, 2017, 9, 15865-15872.	5.6	58
77	Batteries: Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8563-8563.	14.9	1
78	Flexible high performance lithium ion battery electrode based on a free-standing TiO ₂ nanocrystals/carbon cloth composite. RSC Advances, 2016, 6, 35479-35485.	3.6	12
79	Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries. Advanced Functional Materials, 2016, 26, 8408-8417.	14.9	98
80	Vanadium Pentoxide Nanorods Anchored to and Wrapped with Graphene Nanosheets for Highâ€Power Asymmetric Supercapacitors. ChemElectroChem, 2015, 2, 1264-1269.	3.4	31
81	Vanadium Pentoxide Nanorods Anchored to and Wrapped with Graphene Nanosheets for Highâ€Power Asymmetric Supercapacitors. ChemElectroChem, 2015, 2, 1210-1210.	3.4	Ο
82	Building sponge-like robust architectures of CNT–graphene–Si composites with enhanced rate and cycling performance for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3962-3967.	10.3	51