Joan López-moliner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/19608/publications.pdf

Version: 2024-02-01

394421 454955 1,143 78 19 30 g-index citations h-index papers 85 85 85 999 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	quickpsy: An R Package to Fit Psychometric Functions for Multiple Groups. R Journal, 2016, 8, 122.	1.8	144
2	The Effects of Visuomotor Calibration to the Perceived Space and Body, through Embodiment in Immersive Virtual Reality. ACM Transactions on Applied Perception, 2015, 13, 1-22.	1.9	69
3	Modes of executive control in sequence learning: From stimulus-based to plan-based control Journal of Experimental Psychology: General, 2007, 136, 43-63.	2.1	63
4	Gravity as a Strong Prior: Implications for Perception and Action. Frontiers in Human Neuroscience, 2017, 11, 203.	2.0	62
5	Interceptive timing: Prior knowledge matters. Journal of Vision, 2007, 7, 11.	0.3	47
6	Catching a gently thrown ball. Experimental Brain Research, 2010, 206, 409-417.	1.5	43
7	Motion signal and the perceived positions of moving objects. Journal of Vision, 2007, 7, 1.	0.3	33
8	The flash-lag effect is reduced when the flash is perceived as a sensory consequence of our action. Vision Research, 2006, 46, 2122-2129.	1.4	32
9	Seeing the last part of a hitting movement is enough to adapt to a temporal delay. Journal of Vision, 2012, 12, 4-4.	0.3	32
10	The role of differential delays in integrating transient visual and proprioceptive information. Frontiers in Psychology, 2014, 5, 50.	2.1	32
11	Dealing with delays does not transfer across sensorimotor tasks. Journal of Vision, 2014, 14, 8-8.	0.3	27
12	Sound-driven enhancement of vision: disentangling detection-level from decision-level contributions. Journal of Neurophysiology, 2013, 109, 1065-1077.	1.8	26
13	Perceptual asynchrony between color and motion with a single direction change. Journal of Vision, 2006, 6, 10.	0.3	25
14	Microstructure of the superior longitudinal fasciculus predicts stimulation-induced interference with on-line motor control. NeuroImage, 2015, 120, 254-265.	4.2	25
15	Determining whether a ball will land behind or in front of you: Not just a combination of expansion and angular velocity. Vision Research, 2006, 46, 382-391.	1.4	24
16	People Favour Imperfect Catching by Assuming a Stable World. PLoS ONE, 2012, 7, e35705.	2.5	23
17	Decoupling sensory from decisional choice biases in perceptual decision making. ELife, 2019, 8, .	6.0	23
18	Predictive plus online visual information optimizes temporal precision in interception Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1271-1280.	0.9	22

#	Article	IF	CITATIONS
19	Speed of response initiation in a time-to-contact discrimination task reflects the use of $\hat{l}\cdot$. Vision Research, 2002, 42, 2419-2430.	1.4	20
20	Effects of texture and shape on perceived time to passage: Knowing "what―influences judging "when― Perception & Psychophysics, 2007, 69, 887-894.	2.3	20
21	Spatial interference and response control in sequence learning: the role of explicit knowledge. Psychological Research, 2004, 68, 55-63.	1.7	19
22	Vision affects how fast we hear sounds move. Journal of Vision, 2007, 7, 6.	0.3	18
23	The benefit of multisensory integration with biological motion signals. Experimental Brain Research, 2011, 213, 185-192.	1.5	17
24	Synergies between optical and physical variables in intercepting parabolic targets. Frontiers in Behavioral Neuroscience, 2013, 7, 46.	2.0	17
25	Earth-Gravity Congruent Motion Facilitates Ocular Control for Pursuit of Parabolic Trajectories. Scientific Reports, 2019, 9, 14094.	3.3	17
26	Comparing the Sensitivity of Manual Pursuit and Perceptual Judgments to Pictorial Depth Effects. Psychological Science, 2003, 14, 232-236.	3.3	16
27	Flexible timing of eye movements when catching a ball. Journal of Vision, 2016, 16, 13.	0.3	16
28	Deconstructing multisensory enhancement in detection. Journal of Neurophysiology, 2015, 113, 1800-1818.	1.8	15
29	Eye movements in interception with delayed visual feedback. Experimental Brain Research, 2018, 236, 1837-1847.	1.5	15
30	Absence of flash-lag when judging global shape from local positions. Vision Research, 2007, 47, 357-362.	1.4	14
31	Unifying Time to Contact Estimation and Collision Avoidance across Species. PLoS Computational Biology, 2012, 8, e1002625.	3.2	14
32	The time to passage of biological and complex motion. Journal of Vision, 2012, 12, 21-21.	0.3	12
33	The use of visual cues in gravity judgements on parabolic motion. Vision Research, 2018, 149, 47-58.	1.4	12
34	Target modality affects visually guided online control of reaching. Vision Research, 2015, 110, 233-243.	1.4	10
35	The time course of estimating time-to-contact: Switching between sources of information. Vision Research, 2013, 92, 53-58.	1.4	9
36	Why do movements drift in the dark? Passive versus active mechanisms of error accumulation. Journal of Neurophysiology, 2015, 114, 390-399.	1.8	9

#	Article	IF	CITATIONS
37	Hitting moving targets with a continuously changing temporal window. Experimental Brain Research, 2015, 233, 2507-2515.	1.5	9
38	Prediction and final temporal errors are used for trial-to-trial motor corrections. Scientific Reports, 2019, 9, 19230.	3.3	9
39	Looking away from a moving target does not disrupt the way in which the movement toward the target is guided. Journal of Vision, 2020, 20, 5.	0.3	9
40	Components of motion perception revealed: two different after-effects from a single moving object. Vision Research, 2004, 44, 2545-2549.	1.4	7
41	Shifted visual feedback of the hand affects reachability judgments in interception. Vision Research, 2013, 88, 30-37.	1.4	7
42	An object-tracking model that combines position and speed explains spatial and temporal responses in a timing task. Journal of Vision, 2018, 18, 12.	0.3	7
43	Proprioception improves temporal accuracy in a coincidence-timing task. Experimental Brain Research, 2011, 210, 251-258.	1.5	6
44	Temporal and spatial constraints of action effect on sensory binding. Experimental Brain Research, 2015, 233, 3379-3392.	1.5	6
45	Decreased Temporal Sensorimotor Adaptation Due to Perturbation-Induced Measurement Noise. Frontiers in Human Neuroscience, 2019, 13, 46.	2.0	6
46	Similar effects of a motion-in-depth illusion on manual tracking and perceptual judgements. Experimental Brain Research, 2003, 151, 553-556.	1.5	5
47	The influence of motion signals in hand movements. Experimental Brain Research, 2008, 191, 321-329.	1.5	5
48	Determining mean and standard deviation of the strong gravity prior through simulations. PLoS ONE, 2020, 15, e0236732.	2.5	5
49	How timely can our hand movements be?. Human Movement Science, 2012, 31, 1103-1117.	1.4	4
50	Sensorimotor adaptation modifies action effects on sensory binding. Attention, Perception, and Psychophysics, 2015, 77, 626-637.	1.3	4
51	Perceived speed of motion in depth modulates misjudgements of approaching trajectories consistently with a slow prior. Vision Research, 2019, 159, 1-9.	1.4	4
52	Knowing What to Respond in the Future Does Not Cancel the Influence of Past Events. PLoS ONE, 2009, 4, e5607.	2.5	4
53	Detection of radial motion depends on spatial displacement. Vision Research, 2010, 50, 1035-1040.	1.4	3
54	Flexible viewing time when estimating time-to-contact in 3D parabolic trajectories. Journal of Vision, 2021, 21, 9.	0.3	3

#	Article	IF	CITATIONS
55	The perceptual dynamics of the contrast induced speed bias. Vision Research, 2022, 191, 107966.	1.4	3
56	Composicionalidad, c \tilde{A}^3 mputo de estructura y redes neuronales. Estudios De Psicologia, 2002, 23, 175-235.	0.3	2
57	Increased error-correction leads to both higher levels of variability and adaptation. PLoS ONE, 2020, 15, e0227913.	2.5	2
58	Perceptual judgments of duration of parabolic motions. Scientific Reports, 2021, 11, 7108.	3.3	2
59	Contrasting contributions of movement onset and duration to selfâ€evaluation of sensorimotor timing performance. European Journal of Neuroscience, 2021, 54, 5092-5111.	2.6	2
60	Gravity and Known Size Calibrate Visual Information to Time Parabolic Trajectories. Frontiers in Human Neuroscience, 2021, 15, 642025.	2.0	2
61	Scrutinizing integrative effects in a multi-stimuli detection task. Seeing and Perceiving, 2012, 25, 100.	0.3	1
62	The neural correlates of motionâ€induced shifts in reaching. Psychophysiology, 2015, 52, 1577-1589.	2.4	1
63	Motion-in-depth effects on interceptive timing errors in an immersive environment. Scientific Reports, 2021, 11, 21961.	3.3	1
64	EYE-HAND COORDINATION IN INTERCEPTION WITH DELAYED VISUAL FEEDBACK. Journal of Vision, 2017, 17, 811.	0.3	0
65	How to move to catch flying balls with updating predictions. Journal of Vision, 2019, 19, 277.	0.3	0
66	Active sampling of the optic flow to predict time-to-contact. Journal of Vision, 2020, 20, 795.	0.3	0
67	Increased error-correction leads to both higher levels of variability and adaptation. , 2020, 15, e0227913.		0
68	Increased error-correction leads to both higher levels of variability and adaptation., 2020, 15, e0227913.		0
69	Increased error-correction leads to both higher levels of variability and adaptation. , 2020, 15, e0227913.		0
70	Increased error-correction leads to both higher levels of variability and adaptation., 2020, 15, e0227913.		0
71	Increased error-correction leads to both higher levels of variability and adaptation., 2020, 15, e0227913.		0
72	Increased error-correction leads to both higher levels of variability and adaptation., 2020, 15, e0227913.		0

#	Article	IF	CITATIONS
73	Determining mean and standard deviation of the strong gravity prior through simulations., 2020, 15, e0236732.		O
74	Determining mean and standard deviation of the strong gravity prior through simulations., 2020, 15, e0236732.		0
75	Determining mean and standard deviation of the strong gravity prior through simulations., 2020, 15, e0236732.		O
76	Determining mean and standard deviation of the strong gravity prior through simulations., 2020, 15, e0236732.		0
77	Determining mean and standard deviation of the strong gravity prior through simulations. , 2020, 15, e0236732.		O
78	Determining mean and standard deviation of the strong gravity prior through simulations., 2020, 15, e0236732.		0