
MieczysÅ,aw MÄkosza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1960364/publications.pdf

Version: 2024-02-01

MIECZYSA ANN MA KOSZA

#	Article	IF	CITATIONS
1	Vicarious nucleophilic substitution of hydrogen. Accounts of Chemical Research, 1987, 20, 282-289.	15.6	333
2	Nucleophilic Substitution of Hydrogen in Heterocyclic Chemistry. Chemical Reviews, 2004, 104, 2631-2666.	47.7	323
3	Nucleophilic substitution of hydrogen in electron-deficient arenes, a general process of great practical value. Chemical Society Reviews, 2010, 39, 2855.	38.1	214
4	Phase-transfer catalysis. A general green methodology in organic synthesis. Pure and Applied Chemistry, 2000, 72, 1399-1403.	1.9	198
5	Reactions of organic anions. Part 109. Vicarious nucleophilic substitution of hydrogen in nitroarenes with carbanions of .alphahaloalkyl phenyl sulfones. Journal of Organic Chemistry, 1984, 49, 1488-1494.	3.2	103
6	Phase Transfer Catalysis. Catalysis Reviews - Science and Engineering, 2003, 45, 321-367.	12.9	96
7	"Vicarious―nucleophilic substitution of hydrogen in aromatic nitro compounds. Tetrahedron Letters, 1978, 19, 3495-3498.	1.4	76
8	Reactions of Nucleophiles with Nitroarenes: Multifacial and Versatile Electrophiles. Chemistry - A European Journal, 2014, 20, 5536-5545.	3.3	76
9	Vicarious Nucleophilic Substitution of Hydrogen in the Chemistry of Heterocyclic Compounds. Synthesis, 1991, 1991, 103-111.	2.3	73
10	How Does Nucleophilic Aromatic Substitution Really Proceed in Nitroarenes? Computational Prediction and Experimental Verification. Journal of the American Chemical Society, 2016, 138, 7276-7281.	13.7	72
11	Oxidative Nucleophilic Substitution of Hydrogen in Nitroarenes. Chemistry - A European Journal, 1997, 3, 2025-2031.	3.3	71
12	Vicarious nucleophilic substitution of hydrogen. Mechanism and orientation. Journal of Physical Organic Chemistry, 1998, 11, 341-349.	1.9	66
13	Nucleophilic Substitution of Hydrogen in Nitroarenes: A New Chapter of Aromatic Chemistry. Synthesis, 2011, 2011, 2341-2356.	2.3	65
14	Hydroxylation of Nitroarenes with Alkyl Hydroperoxide Anions via Vicarious Nucleophilic Substitution of Hydrogen. Journal of Organic Chemistry, 1998, 63, 4199-4208.	3.2	64
15	Reaction of organic anions. Part 108. On the mechanism of the vicarious nucleophilic substitution of hydrogen in nitroarenes. Journal of Organic Chemistry, 1983, 48, 3860-3861.	3.2	63
16	Reactions of organic anions. Part 110. Vicarious nucleophilic substitution of hydrogen in nitroarenes with .alphasubstituted nitriles and esters. Direct .alphacyanoalkylation and .alphacarbalkoxyalkylation of nitroarenes. Journal of Organic Chemistry, 1984, 49, 1494-1499.	3.2	62
17	Reactions of organic anions. 194. Amination of nitroarenes with sulfenamides via vicarious nucleophilic substitution of hydrogen. Journal of Organic Chemistry, 1992, 57, 4784-4785.	3.2	61
18	Hydroxylation of nitroarenes with alkylhydroperoxide anions via vicarious nucleophilic substitution of hydrogen. Journal of Organic Chemistry, 1990, 55, 4979-4981.	3.2	57

#	Article	IF	CITATIONS
19	Synthesis of Trifluoromethylated Azines via Nucleophilic Oxidative Substitution of Hydrogen by Trifluoromethyl Carbanions. Journal of Organic Chemistry, 2007, 72, 5574-5580.	3.2	57
20	Elucidation of the Vicarious Nucleophilic Substitution of Hydrogen Mechanism via Studies of Competition between Substitution of Hydrogen, Deuterium, and Fluorine. Journal of Organic Chemistry, 2002, 67, 394-400.	3.2	56
21	Catalysis in Two-Phase Systems: Phase Transfer and Related Phenomena. Advances in Catalysis, 1987, 35, 375-422.	0.2	54
22	Synthesis of α-Trifluoromethyl-β-lactams and Esters of β-Amino Acids via 1,3-Dipolar Cycloaddition of Nitrones to Fluoroalkenes. Journal of Organic Chemistry, 2008, 73, 5436-5441.	3.2	54
23	Nucleophilic Aromatic Substitution of Hydrogen as a Tool for the Synthesis of Indole and Quinoline Derivatives. Heterocycles, 2001, 54, 445.	0.7	52
24	Vicarious nucleophilic substitution of hydrogen in nitroderivatives of five-membered heteroaromatic compounds. Tetrahedron, 1995, 51, 8339-8354.	1.9	44
25	Reactions of organic anions XVI. Catalytic nitroarylation of phenylacetonitrile derivatives in aqueous medium Tetrahedron Letters, 1969, 10, 673-676.	1.4	43
26	Ïf-Complex formation and oxidative nucleophilic aromatic substitution in 4-nitro-2,1,3-benzoxadiazoles. Organic and Biomolecular Chemistry, 2003, 1, 2192-2199.	2.8	43
27	Synthesis of Perfluoroalkyl-Substituted Azines via Nucleophilic Substitution of Hydrogen with Perfluoroisopropyl Carbanions. Journal of Organic Chemistry, 2007, 72, 1354-1365.	3.2	42
28	Intermolecular Reactions of Chlorohydrine Anions:  Acetalization of Carbonyl Compounds under Basic Conditions. Organic Letters, 2006, 8, 3745-3748.	4.6	41
29	Direct Observation of the Intermediate in Vicarious Nucleophilic Substitutions of Hydrogen. Angewandte Chemie - International Edition, 2003, 42, 2793-2795.	13.8	40
30	Substituent Effects on the Electrophilic Activity of Nitroarenes in Reactions with Carbanions. Chemistry - A European Journal, 2008, 14, 11113-11122.	3.3	40
31	A Facile Synthesis of 3-Sulfonyl-Substituted Indole Derivatives. Synthesis, 1986, 1986, 651-653.	2.3	39
32	Alkylation of nitroarenes with Grignard reagents via oxidative nucleophilic substitution of hydrogen. Journal of Organometallic Chemistry, 2001, 624, 167-171.	1.8	39
33	Direct introduction of acetylene moieties into azines by methodology. Tetrahedron Letters, 2009, 50, 1444-1446.	1.4	39
34	Synthesis of 4- and 6-substituted nitroindoles. Tetrahedron, 2004, 60, 347-358.	1.9	38
35	Reactions of Nitroheteroarenes with Carbanions: Bridging Aromatic, Heteroaromatic, and Vinylic Electrophilicity. Chemistry - A European Journal, 2008, 14, 6108-6118.	3.3	38
36	Reactions of 1,2,4â€triazines with nitromethide ion. A convenient method of preparation of 1,2,4â€triazinâ€5â€ylcarbaldehyde oximes and their synthetic applications. Journal of Heterocyclic Chemistry, 1996, 33, 1567-1571.	2.6	37

#	Article	IF	CITATIONS
37	New Synthesis of 2â€Heteroarylperfluoropropionic Acids Derivatives by Reaction of Azine <i>N</i> â€Oxides with Hexafluoropropene. Chemistry - A European Journal, 2008, 14, 2577-2589.	3.3	37
38	Two-Phase Reactions in Organic Chemistry. Survey of Progress in Chemistry, 1980, 9, 1-53.	0.3	35
39	Reactions of organic anions, 139. Vicarious nucleophilic substitution of hydrogen in 1,2,4â€triazine derivatives. Liebigs Annalen Der Chemie, 1988, 1988, 627-631.	0.8	35
40	On the Mechanism of the Dimethyldioxirane Oxidation of ÏfHAdducts (Meisenheimer Complexes) Generated from Nitroarenes and Carbanions. Journal of Organic Chemistry, 2000, 65, 1099-1101.	3.2	35
41	Nucleophilic Substitution of Hydrogen in Arenes and Heteroarenes. Topics in Heterocyclic Chemistry, 2013, , 51-105.	0.2	34
42	Alkylation and the Knoevenagel Condensation of Nitrobenzylic Sulfones and Nitriles. ¹ . Synthetic Communications, 1986, 16, 419-423.	2.1	33
43	Synthesis of Benzosultams via Intramolecular Vicarious Nucleophilic Substitution of Hydrogen. Synthesis, 1992, 1992, 571-576.	2.3	33
44	Reaction of organic anions. 96. Vicarious substitution of hydrogen in aromatic nitro compounds with acetonitrile derivatives. Journal of Organic Chemistry, 1980, 45, 1534-1535.	3.2	32
45	Reactions of organic anions. 120. Vicarious nucleophilic substitution of hydrogen in nitrophenols and polynitroarenes. Examples of nucleophilic addition to nitrocyclohexadienonenitronate anions. Journal of Organic Chemistry, 1984, 49, 4562-4563.	3.2	32
46	Stereochemical control of the interfacial darzens condensation. Journal of the Chemical Society Chemical Communications, 1977, , 902-903.	2.0	30
47	Synthesis of α-(Nitroaryl)benzylphosphonates via Oxidative Nucleophilic Substitution of Hydrogen in Nitroarenes. Journal of Organic Chemistry, 2009, 74, 3827-3832.	3.2	30
48	1986, 1986, 69-77.	0.8	28
49	Reactions of Organic Anions, 177. Vicarious Nucleophilic Substitution of Hydrogen, Bisannulation and Competitive Reactions of αâ€Haloalkyl Carbanions with Bicyclic Azaaromatic Compounds. Chemische Berichte, 1991, 124, 577-585.	0.2	28
50	A novel method of indole ring system construction: One-pot synthesis of 4- and 6- nitroindole derivatives via base promoted reaction between 3-nitroaniline and ketones. Tetrahedron Letters, 1999, 40, 5395-5398.	1.4	28
51	Direct Nucleophilic Addition versus a Single-Electron Transfer Pathway of fH Adduct Formation in Vicarious Nucleophilic Substitution of Hydrogen. European Journal of Organic Chemistry, 2004, 2004, 2125-2130.	2.4	28
52	Synthesis of Heterocycles via Nucleophilic Substitution of Hydrogen in Nitroarenes. Heterocycles, 2014, 88, 75.	0.7	28
53	How Does Nucleophilic Aromatic Substitution in Nitroarenes Really Proceed: General Mechanism. Synthesis, 2017, 49, 3247-3254.	2.3	27
54	New Simple Synthesis of N-Hydroxy 2-Vinylindoles. Synlett, 1993, 1993, 597-598.	1.8	26

Mieczyså,aw Mä...kosza

#	Article	IF	CITATIONS
55	Synthesis of 7,8-Dimethoxy-2-oxo-1,3,4,5-tetrahydropyrrolo[4,3,2-de]quinoline: A Key Intermediate en Route to Makaluvamines, Discorhabdin C and Other Marine Alkaloids of this Group via Vicarious Nucleophilic Substitution of Hydrogen. Synthesis, 1997, 1997, 1131-1133.	2.3	26
56	Azole, 26. Stellvertretende nucleophile Substitution von Wasserstoff in Nitropyrazolderivaten. Liebigs Annalen Der Chemie, 1989, 1989, 545-549.	0.8	25
57	Adsorption at the liquid-liquid interface: An important factor in phase-transfer catalysis. Journal of Physical Organic Chemistry, 1993, 6, 412-420.	1.9	25
58	Does the Nucleophilic Substitution of Halogen in o- and p-Halonitrobenzenes with Cyanoacetate Carbanions Proceed via Single Electron Transfer and a Nonchain Radical Process?. Journal of Organic Chemistry, 1994, 59, 6796-6799.	3.2	25
59	Simple method for the introduction of tetrafluoroethyl substituents into nitrogen heterocycles. Mendeleev Communications, 2006, 16, 161-163.	1.6	25
60	Oxidative nucleophilic substitution of hydrogen in nitroarenes with phenylacetic acid derivatives. Tetrahedron, 2005, 61, 11952-11964.	1.9	24
61	The synthesis of 1H-, 3H-, and 5H-2-benzazepine derivatives in the reaction of bicyclic aromatic nitro compounds with dimethyl phosphite and amines in the basic conditions. Journal of Organic Chemistry, 1991, 56, 1283-1286.	3.2	23
62	Vicarious nucleophilic substitution of hydrogen to the nitro group by tertiary carbanions of α-chloroalkyl phenyl sulphones1. Tetrahedron, 1988, 44, 209-213.	1.9	22
63	Enantioselective Synthesis of (R)-α-(p-Nitroaryl)prolines via Oxidative Nucleophilic Substitution of Hydrogen in Nitroarenes. Synlett, 2008, 2008, 1711-1713.	1.8	22
64	Vicarious Nucleophilic Substitution of Hydrogen in 5- and 6-Nitroindole Derivatives. Synthesis, 1989, 1989, 106-109.	2.3	21
65	Vicarious Nucleophilic Substitution of Hydrogen in Nitroarenes by Carbanions of Alkyl Dichloroacetates. Some New Transformations of Chloro(nitroaryl)acetates. Synthesis, 1990, 1990, 850-852.	2.3	21
66	Effect of base concentration on the rate of the vicarious nucleophilic substitution of hydrogen and on the kinetic isotope effect. Tetrahedron Letters, 1999, 40, 7541-7544.	1.4	20
67	Cocatalysis in Phase-Transfer Catalysed Base Induced β-Elimination. Model Studies of Dehydrobromination of Bromocyclohexane. Tetrahedron, 2000, 56, 3553-3558.	1.9	20
68	Electrophilic and Nucleophilic Aromatic Substitutions are Mechanistically Similar with Opposite Polarity. Chemistry - A European Journal, 2020, 26, 15346-15353.	3.3	20
69	Oxidative nucleophilic substitution of hydrogen in nitroarenes with trifluoromethyl carbanions. Synthesis of trifluoromethyl phenols. Tetrahedron, 2004, 60, 5019-5024.	1.9	19
70	Synthesis of Diphenyl(nitroaryl)phosphine Oxides via Oxidative Nucleophilic Substitution of Hydrogen in Nitroarenes with Diphenylphosphine Anion. Synlett, 2008, 2008, 2938-2940.	1.8	19
71	Reactions of Nitroarylmethyl Phenyl Sulfones with Diethyl Maleate and Fumarate. A New, Simple Synthesis of Quinoline-2,3-dicarboxylic Acid Derivatives Acta Chemica Scandinavica, 1992, 46, 689-691.	0.7	19
72	Configurational assignments of oximes derived from 5â€formyl and 5â€acylâ€1,2,4â€triazines. Journal of Heterocyclic Chemistry, 1993, 30, 413-418.	2.6	18

#	Article	IF	CITATIONS
73	New Synthesis of Substituted QuinolineN-Oxides via Cyclization of Alkylideneo-Nitroarylacetonitriles. Synthesis, 1993, 1993, 31-32.	2.3	18
74	Vicarious nucleophilic substitution of hydrogen (VNS) in 1,4-naphthoquinone derivatives—competition between VNS and vinylic nucleophilic substitution (SNV). Tetrahedron, 2001, 57, 9615-9621.	1.9	18
75	Oxidative Nucleophilic Substitution of Hydrogen in Nitroarenes with Carbanions of Protected Serine and Threonine Esters. European Journal of Organic Chemistry, 2010, 2010, 4218-4226.	2.4	18
76	Stereochemical control of the interfacial cyclopropane derivatives formation. Tetrahedron Letters, 1979, 20, 541-544.	1.4	17
77	Oxidative nucleophilic substitution of hydrogen in nitrobenzene with 2-phenylpropionitrile carbanion and potassium permanganate oxidant. Chemical Communications, 1996, , 837-838.	4.1	17
78	Synthesis of Substituted Nitrooxindoles via Intramolecular Oxidative Nucleophilic Substitution of Hydrogen inm-Nitroacylanilides. Synthesis, 2002, 2002, 2203-2206.	2.3	17
79	Cocatalysis by tetravalent tin compounds in phase-transfer catalyzed fluorination of alkyl halides and sulfonates. Tetrahedron Letters, 2002, 43, 2761-2763.	1.4	17
80	A new type of phase-transfer catalysis via continuous transfer of fluoride anions to the organic phase in the form of potassium difluorotriphenylstannate. Tetrahedron Letters, 2004, 45, 1385-1386.	1.4	17
81	New Synthesis of Pyrrolidinesvia Reaction ofγ-Halocarbanions with Imines. Helvetica Chimica Acta, 2005, 88, 1676-1681.	1.6	17
82	Synthesis of 2â€Arylindoles via Condensation of orthoâ€Aminobenzyl Sulfones With Aromatic Aldehydes. Bulletin Des Sociétés Chimiques Belges, 1986, 95, 671-673.	0.0	17
83	Application of nucleophilic substitution of hydrogen in nitroarenes to the chemistry of indoles. Chemistry of Heterocyclic Compounds, 2015, 51, 210-222.	1.2	17
84	α-Chlorobenzylation of Nitroarenes via Vicarious Nucleophilic Substitution with Benzylidene Dichloride: Umpolung of the Friedel–Crafts Reaction. Journal of Organic Chemistry, 2018, 83, 8499-8508.	3.2	17
85	Cocatalysis in phase-transfer catalyzed base induced β-elimination. Part 2: Model studies of dehydrobromination of trans-β-bromostyrene. Tetrahedron, 2002, 58, 7295-7301.	1.9	16
86	Oxidative nucleophilic substitution of hydrogen in nitroarenes by silyl enol ethers. Tetrahedron, 2003, 59, 6261-6266.	1.9	16
87	Synthesis of (Nitroaryl)chloromethanes via Vicarious Nucleophilic Substitution of Hydrogen. Synlett, 1991, 1991, 181-182.	1.8	15
88	Effect of halogens on the activity of halonitrobenzenes in reactions with carbanions. Tetrahedron, 2004, 60, 2577-2581.	1.9	15
89	cine-Substitution of the nitro group in 2,4-disubstituted nitroarenes with carbanions of aryl alkyl sulfones. Tetrahedron Letters, 2004, 45, 3193-3195.	1.4	15
90	Synthesis of α-Fluoro-α-nitroarylacetates via Vicarious Nucleophilic Substitution of Hydrogen. Journal of Organic Chemistry, 2016, 81, 11751-11757.	3.2	15

#	Article	IF	CITATIONS
91	Phase Transfer Catalysis – Basic Principles, Mechanism and Specific Features. Current Catalysis, 2012, 1, 79-87.	0.5	15
92	lsotope effect in oxidative nucleophilic substitution of hydrogen in nitroarenes. Tetrahedron Letters, 1998, 39, 3575-3576.	1.4	14
93	Formal Total Synthesis of Eupolauramine. Heterocycles, 1992, 33, 585.	0.7	14
94	Intramolecular Vicarious Nucleophilic Substitution of Hydrogen in 3-Nitrochloroacetanilides. A Synthesis of Oxidole Derivatives. Heterocycles, 1994, 37, 1701.	0.7	14
95	DIRECT ALKYLATION OF NITROARENES <i>via</i> VICARIOUS NUCLEOPHLIC SUBSTITUTION OF HYDROGEN. Organic Preparations and Procedures International, 1990, 22, 575-578.	1.3	13
96	Direct Isocyanomethylation of Nitroarenes via the Vicarious Nucleophilic Substitution of Hydrogen with Phenylthiomethyl Isocyanide Carbanion. Synthesis, 1993, 1993, 1215-1217.	2.3	13
97	Deoxygenative vs. Vicarious Nucleophilic Substitution of Hydrogen in Reactions of 1,2,4-Triazine 4-Oxides with α-Halocarbanions. European Journal of Organic Chemistry, 2002, 2002, 1412-1416.	2.4	13
98	Tele vs. Oxidative Substitution of Hydrogen inmeta Monochloromethyl, Dichloromethyl, and Trichloromethyl Nitrobenzenes in the Reaction with Grignard Reagents. European Journal of Organic Chemistry, 2003, 2003, 3791-3797.	2.4	13
99	Competition between Nucleophilic Substitution of Halogen (S _N Ar) versus Substitution of Hydrogen (S _N Ar) versus Substitution of Hydrogen (S _N ArH)—A Mass Spectrometry and Computational Study. Chemistry - A European Journal, 2015, 21, 6048-6051.	3.3	13
100	Interfacial Processes—The Key Steps of Phase Transfer Catalyzed Reactions. Catalysts, 2020, 10, 1436.	3.5	13
101	Co-catalysis in phase transfer catalyzed reactions (a concept paper). Arkivoc, 2006, 2006, 7-17.	0.5	13
102	Reactions of Organic Anions, 160. Synthesis of Heptafulvene Derivatives by Vicarious Nucleophilic Substitution of Hydrogen in Tropylium Tetrafluoroborate. Liebigs Annalen Der Chemie, 1989, 1989, 95-97.	0.8	12
103	Reactions of organic anions, 182. Vicarious nucleophilic substitution of a hydrogen atom in 1â€fluoroâ€2,4â€dinitrobenzene (Sanger's Reagent). Liebigs Annalen Der Chemie, 1991, 1991, 605-606.	0.8	12
104	Simple Synthesis of 2-Nitronaphthalene Derivatives from Substitutedp-Nitrobenzyl Sulfones. Synthesis, 1994, 1994, 264-266.	2.3	12
105	A Novel Simple Method of Synthesis of 2-Amino-4-(-6-)nitroindoles via Base Promoted Condensation of m-Nitroanilines with Nitriles. Heterocycles, 2000, 52, 533.	0.7	12
106	Diastereoselective Synthesis of Tetrahydrofurans via Reaction of γ,δ-Epoxycarbanions with Aldehydesâ€. Organic Letters, 2005, 7, 2945-2948.	4.6	12
107	Transition Metal Free Nucleophilic Benzylation of Nitroarenes. Umpolung of the Friedel Crafts Reaction. Advanced Synthesis and Catalysis, 2019, 361, 1641-1646.	4.3	12
108	Introduction of Carbon Substituents into Nitroarenes via Nucleophilic Substitution of Hydrogen: New Developments. Synthesis, 2020, 52, 3095-3110.	2.3	12

Mieczyså,aw Mä…kosza

#	Article	IF	CITATIONS
109	Nucleophilic substitution of hydrogen in electrophilic alkenes. Journal of the Chemical Society Chemical Communications, 1984, , 1195-1196.	2.0	11
110	Conversion of 1-(o-Nitroaryl)alkyl p-Tolylsulfones into Isoxazoles. Heterocycles, 1995, 40, 187.	0.7	11
111	Vicarious nucleophilic substitution of hydrogen in electrophilic aldimines: synthesis of enamines substituted with electron-withdrawing groups. Mendeleev Communications, 1996, 6, 43-44.	1.6	11
112	New Synthesis of Substituted Cyclopentanes via Reactions of Î ³ -Chloro-carbanions with Electron-deficient Alkenes. Synlett, 2004, 2004, 717-719.	1.8	11
113	Nucleophile Substitution von Wasserstoff in Nitroarenen durch phosphorstabilisierte Carbanionen mit â€i,stellvertretenden" Abgangsgruppen. Angewandte Chemie, 1982, 94, 468-468.	2.0	11
114	Base-Induced Reactionsof 3-Phenylsulfonylpropyl- and 3-CyanopropylÂŧrimethylammoniumChlorides with Aldehydes: New Synthesis of Substituted Butadienes. Synthesis, 2003, 2003, 0820-0822.	2.3	10
115	Synthesis of Benzylidenecyclopropanes from γ-Halopropyl Pentachlorophenyl Sulfones Using a Julia-Kocienski Olefination. Synlett, 2008, 2008, 586-588.	1.8	10
116	Vicarious substitution of hydrogen with carbanions of dithioacetals. Journal of Organic Chemistry, 1984, 49, 5272-5274.	3.2	9
117	A new reaction of cyclohexanone enolate with nitroarenes. Chemical Communications, 2001, , 1248-1249.	4.1	9
118	Generation and Reactions of Carbanions from Dialkylamino (Methylthio) Acetonitriles. Bulletin Des Sociétés Chimiques Belges, 1987, 96, 303-310.	0.0	9
119	Synthesis of substituted tetrahydrofurans via intermolecular reactions of Î ³ -chlorocarbanions of 3-substituted 3-chloro-propylphenyl sulfones with aldehydes. Tetrahedron, 2010, 66, 3378-3385.	1.9	9
120	Multiple Reaction Pathways between the Carbanions of αâ€Alkoxyâ€Î±â€phenylacetonitrile and <i>o</i> â€Chloronitrobenzene. European Journal of Organic Chemistry, 2011, 2011, 6887-6892.	2.4	9
121	Direct synthesis of nitroaryl acetylenes from acetylenes and nitroarenes via oxidative nucleophilic substitution of hydrogen. Chemical Communications, 2016, 52, 12650-12652.	4.1	9
122	One-Pot Synthesis of Oxiranes through Vicarious Nucleophilic Substitution (VNS)–Darzens Reaction. Synlett, 2016, 27, 2443-2446.	1.8	9
123	Simple Synthesis of Aryl <i>p</i> â€Nitroarylacetonitriles by Vicarious Nucleophilic Substitution with Carbanions of Protected Cyanohydrins. European Journal of Organic Chemistry, 2018, 2018, 376-380.	2.4	9
124	Synthesis of Diarylacetylenes Bearing Electron-Withdrawing Groups via the Smiles Rearrangement. Synthesis, 2019, 51, 3109-3116.	2.3	9
125	Nucleophilic substitution in nitroarenes: a general corrected mechanism. ChemTexts, 2019, 5, 1.	1.9	9
126	How Do Aromatic Nitro Compounds React with Nucleophiles? Theoretical Description Using Aromaticity, Nucleophilicity and Electrophilicity Indices. Molecules, 2020, 25, 4819.	3.8	9

Mieczyså,aw Mä...kosza

#	Article	IF	CITATIONS
127	Oxidative nucleophilic substitution of hydrogen in nitrobenzenes with 2-phenylpropionic esters. Arkivoc, 2004, 2004, 172-180.	0.5	9
128	Unusual orientation in vicarious nucleophilic substitution of hydrogen in nitropyrroles. Tetrahedron Letters, 1990, 31, 121-122.	1.4	8
129	Preparation of Allylstannanes and Distannanes Using Zinc in Liquid Ammonia. Synthetic Communications, 1998, 28, 2697-2702.	2.1	8
130	Study of the mechanism of base induced dehydrobromination of trans-Î ² -bromostyrene. Tetrahedron, 2003, 59, 1995-2000.	1.9	8
131	How iodide anions inhibit the phase-transfer catalyzed reactions of carbanions. Tetrahedron, 2008, 64, 5925-5932.	1.9	8
132	Dichloro(2,2â€Dimethylcyclopropyl)Methyl Phenyl Sulfone ―a Radical Probe for Detecting Single Electron Transfer Processes. Bulletin Des Sociétés Chimiques Belges, 1994, 103, 445-448.	0.0	8
133	Interfacial Generation of a Carbanion: The Key Step of PTC Reaction Directly Observed by Second Harmonic Generation. Chemistry - A European Journal, 2018, 24, 3975-3979.	3.3	8
134	Simple Synthesis of 3a,6a-Dihydrofuro [2,3-b]furan Derivatives via the Reaction of β-Dicarbonyl Compounds with 5-Cyano- and 5-Methoxycarbonyl-2-nitrofurans1. Synlett, 1992, 1992, 417-418.	1.8	7
135	Synthesis of Substituted Aziridines via Intramolecular Reaction of b-N-Chloroethylamino Carbanions. Heterocycles, 2008, 76, 1511.	0.7	7
136	<i>tele</i> Nucleophilic Substitutions of Hydrogen in <i>m</i> â€{Trichloromethyl)nitrobenzenes with Cyano and Ester Carbanions. European Journal of Organic Chemistry, 2010, 2010, 3501-3506.	2.4	7
137	One-Pot Synthesis of Esters of Cyclopropane Carboxylic Acids via Tandem Vicarious Nucleophilic Substitution–Michael Addition Process. Journal of Organic Chemistry, 2015, 80, 5436-5443.	3.2	7
138	Conversion of 1-(o-Nitroaryl)methyl p-Tolyl Sulfones into Anthranilic Ester Analogues Acta Chemica Scandinavica, 1996, 50, 646-648.	0.7	7
139	Selective One-Pot <i>N</i> -Monomethylation of 2-Nitroanilines Under Ptc Conditions. Synthetic Communications, 2000, 30, 3523-3526.	2.1	6
140	Direkte Beobachtung der Zwischenstufe bei stellvertretenden (vicarious) nucleophilen Substitutionen von Wasserstoff. Angewandte Chemie, 2003, 115, 2899-2901.	2.0	6
141	Vicarious nucleophilic substitution of hydrogen versus vinylic substitution of halogen in the reactions of carbanions of halomethyl aryl sulfones with dialkyl halofumarates and halomaleates. Tetrahedron, 2004, 60, 5413-5421.	1.9	6
142	NUCLEOPHILIC SUBSTITUTION OF HYDROGEN IN NITROARENES WITH CARBANIONS OF BENZODITHIOLANE SULFOXIDES VIA INTRAMOLECULAR REDOX PROCESS. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 80, 89-94.	1.6	5
143	An unusual reaction of 4-methoxy-1-nitronaphthalene and 4-amino-1-nitronaphthalene with dimethyl phosphite under basic conditions. Tetrahedron Letters, 1987, 28, 1707-1710.	1.4	4
144	Reactions of Carbanions of 1â€Chloroâ€5â€(phenylsulfonyl)pentâ€2â€enes: Synthesis of Vinylâ€Substituted Tetrahydrofurans. European Journal of Organic Chemistry, 2009, 2009, 3732-3740.	2.4	4

#	Article	IF	CITATIONS
145	Intramolecular Addition of γâ€Chloro Carbanions to Electrophilic Groups: Synthesis of Tricyclic Tetrahydrofurans, Pyrrolidines, and Cyclopentanes. European Journal of Organic Chemistry, 2010, 2010, 1885-1894.	2.4	4
146	Diastereoselective Synthesis of Tetrahydrofurans from Aryl 3-Chloropropylsulfoxides and Aldehydes. Journal of Organic Chemistry, 2010, 75, 3251-3259.	3.2	4
147	Intermolecular Reactions of <i>Ĵ³</i> â€Halocarbanions – Stepwise Analogs of 1,3â€Dipolar Cycloaddition. Helvetica Chimica Acta, 2012, 95, 1871-1890.	1.6	4
148	Introduction of Perfluoroalkyl Substituents into Heteroarenes via Nucleophilic Substitution of Hydrogen. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 363-374.	0.7	3
149	Does Nucleophilic Substitution in Nitroarenes Proceed via Single Electron Transfer (SET)?. European Journal of Organic Chemistry, 2021, 2021, 6175-6179.	2.4	3
150	Direct Conversion of Aromatic Aldehydes into Benzamides via Oxidation with Potassium Permanganate in Liquid Ammonia. Synlett, 2014, 26, 84-86.	1.8	2
151	CHLOROMETHYL METHYL SULFONE BY OXIDATION OF CHLOROMETHYL METHYL SULFIDE. Organic Preparations and Procedures International, 2003, 35, 412-414.	1.3	1
152	Vicarious nucleophilic substitution of hydrogen versus vinylic substitution of halogen in the reactions of carbanions of halomethyl aryl sulfones with dialkyl halofumarates and halomaleates. Tetrahedron, 2004, 60, 5413-5413.	1.9	1
153	Phase Transfer Catalysis. , 2002, , .		1
154	Synthesis of 4- and 6-Substituted Nitroindoles ChemInform, 2004, 35, no.	0.0	0
155	A New Type of Phase-Transfer Catalysis via Continuous Transfer of Fluoride Anions to the Organic Phase in the Form of Potassium Difluorotriphenylstannate ChemInform, 2004, 35, no.	0.0	0
156	Nucleophilic Substitution of Hydrogen in Heterocyclic Chemistry. ChemInform, 2004, 35, no.	0.0	0
157	Direct Nucleophilic Addition versus a Single-Electron Transfer Pathway of σH Adduct Formation in Vicarious Nucleophilic Substitution of Hydrogen ChemInform, 2004, 35, no.	0.0	Ο
158	Vicarious Nucleophilic Substitution of Hydrogen versus Vinylic Substitution of Halogen in the Reactions of Carbanions of Halomethyl Aryl Sulfones with Dialkyl Halofumarates and Halomaleates ChemInform, 2004, 35, no.	0.0	0
159	New Synthesis of Pyrrolidines via Reaction of Î ³ -Halocarbanions with Imines ChemInform, 2005, 36, no.	0.0	Ο
160	Simple Synthesis of Dimethyl Nitrobenzhydrylphosphonates and Heteroarylnitroarylacetonitriles via Vicarious Nucleophilic Substitution (VNS) Reaction. Synthesis, 2021, 53, 175-181.	2.3	0