
Mohamed S El-Deab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosted electrolytic hydrogen production at tailor-tuned nano-dendritic Ni-doped Co foam-like catalyst. Electrochimica Acta, 2022, 410, 139992.	5.2	11
2	<i>In situ</i> generation of exfoliated graphene layers on recycled graphite rods for enhanced capacitive performance of Ni–Co binary hydroxide. RSC Advances, 2021, 11, 26258-26272.	3.6	14
3	Dual-functioning porous catalysts: robust electro-oxidation of small organic molecules and water electrolysis using bimetallic Ni/Cu foams. Sustainable Energy and Fuels, 2021, 5, 986-994.	4.9	14
4	Smart selection of fuel blends: Robust oxidation of formic acid in its blend with urea at NiOx/Pd nanoparticles-based binary anodes. Renewable Energy, 2021, 167, 830-840.	8.9	9
5	Microporous Film of Ternary Ni/Co/Fe Alloy for Superior Electrolytic Hydrogen Production in Alkaline Medium. Journal of the Electrochemical Society, 2021, 168, 054509.	2.9	14
6	Tailor-designed Ni-Co binary hydroxide electrodes for boosted supercapacitor applications: Smart selection of additives. Electrochimica Acta, 2021, 378, 137991.	5.2	10
7	Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Separation and Purification Technology, 2021, 266, 118597.	7.9	18
8	Resistivity zone index: A new approach in rock typing to enhance reservoir characterization using well log data. Energy Reports, 2021, 7, 711-723.	5.1	12
9	Efficient catalytic production of biodiesel using nano-sized sugar beet agro-industrial waste. Fuel, 2020, 261, 116481.	6.4	59
10	Enhanced electro-oxidation of methanol at nanoparticle-based Ru/Pt bimetallic catalyst: Impact of GC substrate pretreatment. International Journal of Hydrogen Energy, 2020, 45, 27171-27181.	7.1	4
11	Hybrid supercapacitors: A simple electrochemical approach to determine optimum potential window and charge balance. Journal of Power Sources, 2020, 480, 229152.	7.8	45
12	Boosted electrocatalytic oxidation of formic acid at CoOx/Pd/Au nanoparticle-based ternary catalyst. International Journal of Hydrogen Energy, 2020, 45, 21297-21307.	7.1	22
13	Nanocrystalline Cellulose Confined in Amorphous Carbon Fibers as Capacitor Material for Efficient Energy Storage. Journal of Physical Chemistry C, 2020, 124, 7007-7015.	3.1	37
14	3D Macroporous Catalysts: Impact of Additives on the Morphology and Performance of Cu/Cu2O Foam Prepared by Dynamic Hydrogen Bubble Template Towards Glycerol Electro-Oxidation. Journal of the Electrochemical Society, 2020, 167, 114505.	2.9	14
15	Electrocatalysis by design: Enhanced electro-oxidation of glycerol at NiOx nanoparticle modified 3D porous carbon felts. International Journal of Hydrogen Energy, 2020, 45, 9658-9668.	7.1	30
16	Tailorâ€Designed Porous Catalysts: Nickelâ€Doped Cu/Cu ₂ O Foams for Efficient Glycerol Electroâ€Oxidation. ChemElectroChem, 2020, 7, 951-958.	3.4	19
17	Enhanced Electrocatalytic Oxidation of Urea at CuOx-NiOx Nanoparticle-Based Binary Catalyst Modified Polyaniline/GC Electrodes. Journal of the Electrochemical Society, 2020, 167, 064522.	2.9	17
18	Enhanced electrocatalytic oxidation of glucose at graphene nanosheets – Metal oxides nanoparticles modified GC electrodes. Journal of Electroanalytical Chemistry, 2019, 835, 313-323.	3.8	20

#	Article	IF	CITATIONS
19	EIS-Activity Correlation for the Electro-Oxidation of Ethylene Glycol at Nanoparticles-Based Electrocatalysts. Journal of the Electrochemical Society, 2019, 166, F364-F376.	2.9	9
20	A competent simultaneously co-electrodeposited Pt-MnOx nanocatalyst for enhanced formic acid electro-oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 169-175.	5.3	24
21	Design of efficient bimetallic Pt–Au nanoparticle-based anodes for direct formic acid fuel cells. International Journal of Hydrogen Energy, 2019, 44, 3615-3624.	7.1	37
22	Superior electrocatalysis of formic acid electro-oxidation on a platinum, gold and manganese oxide nanoparticle-based ternary catalyst. International Journal of Hydrogen Energy, 2018, 43, 139-149.	7.1	37
23	Activation/deactivation behavior of nano-NiOx based anodes towards the OER: Influence of temperature. Electrochimica Acta, 2018, 276, 176-183.	5.2	30
24	Fabrication of CuO _{<i>x</i>} -Pd Nanocatalyst Supported on a Glassy Carbon Electrode for Enhanced Formic Acid Electro-Oxidation. Journal of Nanotechnology, 2018, 2018, 1-9.	3.4	9
25	Flower-shaped gold nanoparticles: Preparation, characterization, and electrocatalytic application. Arabian Journal of Chemistry, 2017, 10, 877-884.	4.9	27
26	Conducting polymers inducing catalysis: Enhanced formic acid electro-oxidation at a Pt/polyaniline nanocatalyst. International Journal of Hydrogen Energy, 2017, 42, 11166-11176.	7.1	33
27	Efficient direct formic acid fuel cell (DFAFC) anode of nano-sized palladium complex: High durability and activity origin. Applied Catalysis B: Environmental, 2017, 213, 118-126.	20.2	32
28	Propitious Dendritic Cu ₂ O–Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 19766-19772.	8.0	39
29	Promising ethylene glycol electro-oxidation at tailor-designed NiOx/Pt nanocatalyst. International Journal of Hydrogen Energy, 2017, 42, 5095-5104.	7.1	12
30	Performance Enhancement of PA-TFC RO Membrane by Using Magnesium Silicate Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 201-214.	3.7	16
31	Novel fuel blends facilitating the electro-oxidation of formic acid at a nano-Pt/GC electrode. RSC Advances, 2016, 6, 29099-29105.	3.6	13
32	Synergistic enhancement of the electro-oxidation of methanol at tailor-designed nanoparticle-based CoOx/MnOx/Pt ternary catalysts. Electrochimica Acta, 2015, 165, 402-409.	5.2	29
33	The Origin of Electrocatalytic Activity of Gold Nanoparticles Modified Pt-Based Surfaces Towards Formic Acid Oxidation. Springer Proceedings in Energy, 2015, , 379-387.	0.3	2
34	Electrocatalysis by design: Synergistic catalytic enhancement of formic acid electro-oxidation at core–shell Pd/Pt nanocatalysts. International Journal of Hydrogen Energy, 2015, 40, 1789-1794.	7.1	34
35	Towards improving the catalytic activity and stability of platinum-based anodes in direct formic acid fuel cells. International Journal of Hydrogen Energy, 2015, 40, 7808-7816.	7.1	48
36	Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes. Journal of Power Sources, 2015, 286, 504-509.	7.8	27

#	Article	IF	CITATIONS
37	On the Catalytic Activity of Palladium Nanoparticles-Based Anodes Towards Formic Acid Electro-oxidation: Effect of Electrodeposition Potential. , 2015, , 559-570.		1
38	Electrocatalysis of Formic Acid Electro-Oxidation at Platinum Nanoparticles Modified Surfaces with Nickel and Cobalt Oxides Nanostructures. , 2015, , 577-594.		6
39	Electrocatalysis by Nanoparticle: Enhanced Electro-Oxidation of Formic Acid at NiO <i>_x</i> –Pd Binary Nanocatalysts. Journal of the Electrochemical Society, 2015, 162, F1114-F1118.	2.9	20
40	Promoting Effect of Hydrocarbon Impurities on the Electro-Oxidation of Formic Acid at Pt Nanoparticles Modified GC Electrodes. Electrochimica Acta, 2015, 180, 268-279.	5.2	23
41	Electrocatalytic Oxidation of Methanol at Nanoparticle-Based MnOx/NiOx/Pt Ternary Catalysts: Optimization of Loading Level and Order of Deposition. Journal of the Electrochemical Society, 2014, 161, F1340-F1347.	2.9	13
42	Impurities Contributing to Catalysis: Enhanced Electro-Oxidation of Formic Acid at Pt/GC Electrodes in the Presence of Vinyl Acetate. Journal of Physical Chemistry C, 2014, 118, 22457-22464.	3.1	28
43	Acrylonitrile-contamination induced enhancement of formic acid electro-oxidation at platinum nanoparticles modified glassy carbon electrodes. Journal of Power Sources, 2014, 265, 57-61.	7.8	34
44	Enhanced electrolytic generation of oxygen gas at binary nickel oxide–cobalt oxide nanoparticle-modified electrodes. Journal of Solid State Electrochemistry, 2013, 17, 871-879.	2.5	22
45	Poisoning Effect of Selected Hydrocarbon Impurities on the Catalytic Performance of Pt/C Catalysts towards the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2013, 160, F651-F658.	2.9	33
46	Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochimica Acta, 2013, 94, 62-71.	5.2	67
47	Impact of acrylonitrile poisoning on oxygen reduction reaction at Pt/C catalysts. Journal of Power Sources, 2013, 229, 65-71.	7.8	25
48	Electrocatalytic oxidation of methanol at tantalum oxide-modified Pt electrodes. Journal of Power Sources, 2012, 220, 399-404.	7.8	38
49	Facilitated Electro-Oxidation of Formic Acid at Nickel Oxide Nanoparticles Modified Electrodes. Journal of the Electrochemical Society, 2012, 159, F249-F254.	2.9	41
50	Electrocatalytic activity of nickel oxide nanoparticles-modified electrodes: Optimization of the loading level and operating pH towards the oxygen evolution reaction. International Journal of Hydrogen Energy, 2012, 37, 68-77.	7.1	92
51	Platinum nanoparticles–manganese oxide nanorods as novel binary catalysts for formic acid oxidation. Journal of Advanced Research, 2012, 3, 65-71.	9.5	20
52	Electrooxidation of Formic Acid at Platinum–Gold Nanoparticle-modified Electrodes. Chemistry Letters, 2011, 40, 1374-1375.	1.3	25
53	Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study. Materials Chemistry and Physics, 2011, 129, 223-227.	4.0	25
54	Electrocatalytic Oxidation of CO at Pt Modified with Manganese Oxide Nanorods. Electrocatalysis, 2011, 2, 220-223.	3.0	3

#	Article	IF	CITATIONS
55	Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays. Journal of Advanced Research, 2010, 1, 87-93.	9.5	14
56	Hydrogen spillover phenomenon: Enhanced reversible hydrogen adsorption/desorption at Ta2O5-coated Pt electrode in acidic media. Electrochimica Acta, 2010, 55, 3528-3536.	5.2	27
57	Enhanced electro-oxidation of formic acid at manganese oxide single crystalline nanorod-modified Pt electrodes. Electrochemistry Communications, 2009, 11, 776-778.	4.7	40
58	Novel procedure for the fabrication of gold nanostructures enriched in Au (1 1 0) facet orientation. Electrochemistry Communications, 2009, 11, 1273-1276.	4.7	12
59	On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time. Electrochimica Acta, 2009, 54, 3720-3725.	5.2	56
60	Non-platinum electrocatalysts: Manganese oxide nanoparticle-cobaltporphyrin binary catalysts for oxygen reduction. Journal of Applied Electrochemistry, 2008, 38, 1445-1451.	2.9	20
61	Electrocatalysis by nanoparticles: Optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochimica Acta, 2008, 53, 4351-4358.	5.2	75
62	On the aggregation phenomena of Au nanoparticles: Effect of substrate roughness on the particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318, 78-83.	4.7	14
63	Electrosynthesis of Single-Crystalline MnOOH Nanorods onto Pt Electrodes. Journal of the Electrochemical Society, 2008, 155, D14.	2.9	35
64	Bisthiolâ€Assisted Multilayers' Selfâ€Assembly of Gold Nanoparticles: Synthesis, Characterization, Size Control and Electrocatalytic Applications. Macromolecular Symposia, 2008, 270, 74-81.	0.7	3
65	Electrocatalysis by Nanoparticles: Fabrication and Electrochemical Applications of Tailor-Designed Nanoparticles-Based Electrocatalysts. Electrochemistry, 2007, 75, 858-866.	1.4	3
66	Tailor-Designed Platinum Nanoparticles Electrodeposited onto Gold Electrode. Journal of the Electrochemical Society, 2007, 154, B810.	2.9	30
67	Enhanced water electrolysis: Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochemistry Communications, 2007, 9, 2082-2087.	4.7	145
68	Direct electron transfer of copper–zinc superoxide dismutase (SOD) on crystallographically oriented Au nanoparticles. Electrochemistry Communications, 2007, 9, 651-656.	4.7	22
69	Electrocatalysis by design: Effect of the loading level of Au nanoparticles–MnOx nanoparticles binary catalysts on the electrochemical reduction of molecular oxygen. Electrochimica Acta, 2007, 52, 2166-2174.	5.2	57
70	Electrocatalytic Reduction of Oxygen at Au Nanoparticles–Manganese Oxide Nanoparticle Binary Catalysts. Journal of the Electrochemical Society, 2006, 153, A1365.	2.9	48
71	Fabrication of Phase-Separated Multicomponent Self-Assembled Monolayers at Gold Nanoparticles Electrodeposited on Glassy Carbon Electrodes. Journal of the Electrochemical Society, 2006, 153, E201.	2.9	10
72	Electrocatalytic Activity of Metal-Loaded Reticulated Vitreous Carbon Electrodes for Hydrogen Evolution from Flowing Alkaline Solutions. Bulletin of the Chemical Society of Japan, 2006, 79, 1711-1718.	3.2	7

#	Article	IF	CITATIONS
73	Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochimica Acta, 2006, 52, 1792-1798.	5.2	86
74	Manganese Oxide Nanoparticles Electrodeposited on Platinum Are Superior to Platinum for Oxygen Reduction. Angewandte Chemie - International Edition, 2006, 45, 5963-5966.	13.8	193
75	Oxygen reduction at electrochemically deposited crystallographically oriented Au(100)-like gold nanoparticles. Electrochemistry Communications, 2005, 7, 29-34.	4.7	144
76	Size and Crystallographic Orientation Controls of Gold Nanoparticles Electrodeposited on GC Electrodes. Journal of the Electrochemical Society, 2005, 152, C1.	2.9	104
77	Electrochemical Preparation of a Au Crystal with Peculiar Morphology and Unique Growth Orientation and Its Catalysis for Oxygen Reduction. Journal of the Electrochemical Society, 2005, 152, A1226.	2.9	52
78	Electrochemical reduction of nitrate to ammonia at modified gold electrodes. Electrochimica Acta, 2004, 49, 1639-1645.	5.2	57
79	Molecular-level design of binary self-assembled monolayers on polycrystalline gold electrodes. Electrochimica Acta, 2004, 49, 2189-2194.	5.2	57
80	Fabrication of Au(111)-Like Polycrystalline Gold Electrodes and Their Applications to Oxygen Reduction. Journal of the Electrochemical Society, 2004, 151, E213.	2.9	76
81	Electrochemical reduction of nitrate to ammonia at modified gold electrodes. Electrochimica Acta, 2004, 49, 1639-1645.	5.2	22
82	Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes. Journal of Electroanalytical Chemistry, 2003, 553, 107-115.	3.8	87
83	Quasi-reversible two-electron reduction of oxygen at gold electrodes modified with a self-assembled submonolayer of cysteine. Electrochemistry Communications, 2003, 5, 214-219.	4.7	63
84	Electrochemical Reduction of Oxygen on Gold Nanoparticle-Electrodeposited Glassy Carbon Electrodes. Journal of the Electrochemical Society, 2003, 150, A851.	2.9	158
85	Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochimica Acta, 2002, 47, 4255-4261.	5.2	160
86	Electroreduction of nitrate ion to nitrite and ammonia on a gold electrode in acidic and basic sodium and cesium nitrate solutions. Journal of Electroanalytical Chemistry, 1999, 470, 46-52.	3.8	70
87	CBG-HCl as a green corrosion inhibitor for low carbon steel in 0.5M H2SO4 with and without 0.1M NaCl. , 0, 164, 240-248.		9
88	Synergistic Effect of Urea on Vitamin C Electro-Oxidation at NiOx/CoOx Binary Catalysts Supported on Graphene Nanosheets. Journal of the Electrochemical Society, 0, , .	2.9	3