
Luis Granero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1958423/publications.pdf Version: 2024-02-01

LUIS CRANERO

#	Article	IF	CITATIONS
1	Efficacy of Nâ€acetylcysteine in the prevention of alcohol relapseâ€like drinking: Study in longâ€term ethanolâ€experienced male rats. Journal of Neuroscience Research, 2021, 99, 638-648.	2.9	7
2	The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals, 2021, 14, 593.	3.8	2
3	Impaired alcohol-induced dopamine release in the nucleus accumbens in an inflammatory pain model: behavioral implications in male rats. Pain, 2020, 161, 2203-2211.	4.2	12
4	Dose-dependent induction of CPP or CPA by intra-pVTA ethanol: Role of mu opioid receptors and effects on NMDA receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 100, 109875.	4.8	8
5	Activation of MORs in the VTA induces changes on cFos expression in different projecting regions: Effect of inflammatory pain. Neurochemistry International, 2019, 131, 104521.	3.8	13
6	Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats. Frontiers in Neuroanatomy, 2017, 11, 8.	1.7	4
7	Pre-Clinical Studies with D-Penicillamine as a Novel Pharmacological Strategy to Treat Alcoholism: Updated Evidences. Frontiers in Behavioral Neuroscience, 2017, 11, 37.	2.0	9
8	Mystic Acetaldehyde: The Never-Ending Story on Alcoholism. Frontiers in Behavioral Neuroscience, 2017, 11, 81.	2.0	41
9	Dual motor responses elicited by ethanol in the posterior VTA: Consequences of the blockade of μ-opioid receptors. Journal of Psychopharmacology, 2015, 29, 1029-1034.	4.0	11
10	Acetaldehyde sequestration by d-penicillamine prevents ethanol relapse-like drinking in rats: evidence from an operant self-administration paradigm. Psychopharmacology, 2015, 232, 3597-3606.	3.1	8
11	Disposition of <scp>d</scp> â€penicillamine, a promising drug for preventing alcoholâ€relapse. Influence of dose, chronic alcohol consumption and age: studies in rats. Biopharmaceutics and Drug Disposition, 2014, 35, 284-295.	1.9	2
12	Improved effect of the combination naltrexone/D-penicillamine in the prevention of alcohol relapse-like drinking in rats. Journal of Psychopharmacology, 2014, 28, 76-81.	4.0	11
13	Efficacy of d-penicillamine, a sequestering acetaldehyde agent, in the prevention of alcohol relapse-like drinking in rats. Psychopharmacology, 2013, 228, 563-575.	3.1	31
14	Opposite motor responses elicited by ethanol in the posterior VTA: The role of acetaldehyde and the non-metabolized fraction of ethanol. Neuropharmacology, 2013, 72, 204-214.	4.1	30
15	Salsolinol and ethanol-derived excitation of dopamine mesolimbic neurons: new insights. Frontiers in Behavioral Neuroscience, 2013, 7, 74.	2.0	3
16	Salsolinol Stimulates Dopamine Neurons in Slices of Posterior Ventral Tegmental Area Indirectly by Activating μ-Opioid Receptors. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 43-50.	2.5	43
17	Revisiting the controversial role of salsolinol in the neurobiological effects of ethanol: Old and new vistas. Neuroscience and Biobehavioral Reviews, 2012, 36, 362-378.	6.1	47
18	Induction of conditioned place preference and dopamine release by salsolinol in posterior VTA of rats: Involvement of 1¼-opioid receptors. Neurochemistry International, 2011, 59, 559-562.	3.8	43

LUIS GRANERO

#	Article	IF	CITATIONS
19	Locomotor stimulant effects of acute and repeated intrategmental injections of salsolinol in rats: role of μ-opioid receptors. Psychopharmacology, 2010, 209, 1-11.	3.1	44
20	Systemic administration of d-penicillamine prevents the locomotor activation after intra-VTA ethanol administration in rats. Neuroscience Letters, 2010, 483, 143-147.	2.1	32
21	Motor stimulant effects of ethanol and acetaldehyde injected into the posterior ventral tegmental area of rats: role of opioid receptors. Psychopharmacology, 2009, 204, 641-653.	3.1	45
22	Induction of brain CYP2E1 changes the effects of ethanol on dopamine release in nucleus accumbens shell. Drug and Alcohol Dependence, 2009, 100, 83-90.	3.2	11
23	Local salsolinol modulates dopamine extracellular levels from rat nucleus accumbens: Shell/core differences. Neurochemistry International, 2009, 55, 187-192.	3.8	27
24	Shell/core differences in mu- and delta-opioid receptor modulation of dopamine efflux in nucleus accumbens. Neuropharmacology, 2008, 55, 183-189.	4.1	51
25	Distribution and Differential Induction of CYP2E1 by Ethanol and Acetone in the Mesocorticolimbic System of Rat. Alcohol and Alcoholism, 2008, 43, 401-407.	1.6	31
26	Cytotoxic effect of As(III) in Caco-2 cells and evaluation of its human intestinal permeability. Toxicology in Vitro, 2006, 20, 658-663.	2.4	24
27	Hippocampal Dopamine Receptors Modulate the Motor Activation and the Increase in Dopamine Levels in the Rat Nucleus Accumbens Evoked by Chemical Stimulation of the Ventral Hippocampus. Neuropsychopharmacology, 2005, 30, 843-852.	5.4	26
28	Hippocampal dopamine receptors modulate cFos expression in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Neuropharmacology, 2005, 49, 1067-1076.	4.1	15
29	Assessment and modulation of acamprosate intestinal absorption: comparative studies using in situ, in vitro (CACO-2 cell monolayers) and in vivo models. European Journal of Pharmaceutical Sciences, 2004, 22, 347-356.	4.0	28
30	Pharmacology of Acamprosate: An Overview. CNS Neuroscience & Therapeutics, 2003, 9, 359-374.	4.0	36
31	Kinetics of zinc transport in vitro in rat small intestine and colon: interaction with copper. European Journal of Pharmaceutical Sciences, 2002, 16, 289-295.	4.0	59
32	Disposition of acamprosate in the rat: Influence of probenecid. Biopharmaceutics and Drug Disposition, 2002, 23, 283-291.	1.9	9
33	Neurotoxic relationship between dopamine and iron in the striatal dopaminergic nerve terminals. Brain Research, 2000, 858, 26-32.	2.2	24
34	Distribution of ceftazidime in rat tissues. , 1998, 19, 473-478.		10
35	Renal and nonrenal clearances of ceftriaxone at the steady-state and its relation to plasma protein binding. European Journal of Pharmaceutical Sciences, 1995, 3, 133-138.	4.0	2
36	Complex I inhibitor effect on the nigral and striatal release of dopamine in the presence and absence of nomifensine. European Journal of Pharmacology, 1995, 280, 251-256.	3.5	30

#	Article	IF	CITATIONS
37	Physiological pharmacokinetic model for ceftazidime disposition in the rat and its application to prediction of plasma concentrations in humans. European Journal of Pharmaceutical Sciences, 1993, 1, 3-11.	4.0	7
38	General treatment of the enterohepatic recirculation of drugs and its influence on the area under the plasma level curves, bioavailability, and clearance. Pharmaceutical Research, 1992, 09, 1306-1313.	3.5	12
39	Influence of permanent cannulation of the jugular vein on pharmacokinetics of amoxycillin and antipyrine in the rat. Pharmaceutical Research, 1992, 09, 1587-1591.	3.5	28