Daniele Nuvoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/195800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 2011, 21, 3428-3431.	6.7	352
2	Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. Journal of Materials Chemistry, 2011, 21, 8727.	6.7	201
3	Stimuli Responsive Hydrogels Prepared by Frontal Polymerization. Biomacromolecules, 2009, 10, 2672-2677.	5.4	95
4	Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose, 2013, 20, 2393-2402.	4.9	64
5	Phosphonium-Based Ionic Liquids as a New Class of Radical Initiators and Their Use in Gas-Free Frontal Polymerization. Macromolecules, 2008, 41, 5191-5196.	4.8	63
6	Synthesis and Characterization of Functionally Gradient Materials Obtained by Frontal Polymerization. ACS Applied Materials & Interfaces, 2015, 7, 3600-3606.	8.0	62
7	Synthesis and characterization of grapheneâ€containing thermoresponsive nanocomposite hydrogels of poly(<i>N</i> â€vinylcaprolactam) prepared by frontal polymerization. Journal of Polymer Science Part A, 2012, 50, 4110-4118.	2.3	61
8	Advances in the frontal ring opening metathesis polymerization of dicyclopentadiene. Journal of Polymer Science Part A, 2014, 52, 2776-2780.	2.3	57
9	Poly(<i>N</i> , <i>N</i> â€dimethylacrylamide) hydrogels obtained by frontal polymerization. Journal of Polymer Science Part A, 2009, 47, 1422-1428.	2.3	56
10	Thermoresponsive super water absorbent hydrogels prepared by frontal polymerization. Journal of Polymer Science Part A, 2010, 48, 2486-2490.	2.3	54
11	In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. Journal of Materials Chemistry, 2011, 21, 16544.	6.7	53
12	Stimuliâ€responsive polymer hydrogels containing partially exfoliated graphite. Journal of Polymer Science Part A, 2010, 48, 5375-5381.	2.3	48
13	Thermoresponsive super water absorbent hydrogels prepared by frontal polymerization of N â€isopropyl acrylamide and 3â€sulfopropyl acrylate potassium salt. Journal of Polymer Science Part A, 2011, 49, 1228-1234.	2.3	44
14	Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Composites Part B: Engineering, 2014, 60, 29-35.	12.0	42
15	Effect of limonene on the frontal ring opening metathesis polymerization of dicyclopentadiene. Journal of Polymer Science Part A, 2016, 54, 63-68.	2.3	38
16	Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer, 2012, 53, 4019-4024.	3.8	37
17	ZnO nanoparticles with high degradation efficiency of organic dyes under sunlight irradiation. Materials Letters, 2016, 162, 257-260.	2.6	37
18	Polymer hydrogels of 2â€hydroxyethyl acrylate and acrylic acid obtained by frontal polymerization. Journal of Polymer Science Part A, 2012, 50, 1515-1520.	2.3	33

DANIELE NUVOLI

#	Article	IF	CITATIONS
19	The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Research Letters, 2012, 7, 674.	5.7	30
20	Hybrid organic/inorganic epoxy resins prepared by frontal polymerization. Journal of Polymer Science Part A, 2010, 48, 4721-4725.	2.3	26
21	Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	25
22	Synthesis and characterization of poly(2-hydroxyethylacrylate)/β-cyclodextrin hydrogels obtained by frontal polymerization. Carbohydrate Polymers, 2016, 150, 166-171.	10.2	24
23	Organic-inorganic interpenetrating polymer networks and hybrid polymer materials prepared by frontal polymerization. Journal of Polymer Science Part A, 2013, 51, 4618-4625.	2.3	21
24	Synthesis and characterization of poly(ethylene glycol) diacrylate copolymers containing azobenzene groups prepared by frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 3291-3298.	2.3	19
25	Double responsive copolymer hydrogels prepared by frontal polymerization. Journal of Polymer Science Part A, 2016, 54, 2166-2170.	2.3	19
26	Semiâ€interpenetrating polymer networks of methyl cellulose and polyacrylamide prepared by frontal polymerization. Journal of Polymer Science Part A, 2017, 55, 1268-1274.	2.3	15
27	Synthesis and optical characterization of photoactive poly(2â€phenoxyethyl acrylate) copolymers containing azobenzene units, prepared by frontal polymerization using novel ionic liquids as initiators. Journal of Polymer Science Part A, 2012, 50, 821-830.	2.3	14
28	Multistimuli-responsive hydrogels of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) containing graphene. Colloid and Polymer Science, 2013, 291, 2681-2687.	2.1	13
29	Three component terpolymer and IPN hydrogels with response to stimuli. Polymer, 2014, 55, 5305-5313.	3.8	13
30	Sliding Crosslinked Thermoresponsive Materials: Polypseudorotaxanes Made of Poly(N-Isopropylacrylamide) and Acrylamide-Î ³ -Cyclodextrin. Frontiers in Chemistry, 2018, 6, 585.	3.6	13
31	Preparation and optical characterization of two photoactive poly(bisphenol a ethoxylate diacrylate) copolymers containing designed aminoâ€nitroâ€substituted azobenzene units, obtained via classical and frontal polymerization, using novel ionic liquids as initiators. Journal of Polymer Science Part A, 2012 50, 1006, 1016	2.3	11
32	Study of polymeric nanocomposites prepared by inserting graphene and / or Ag, Au and ZnO nanoparticles in a TEGDA polymer matrix, by means of the use of dielectric spectroscopy. AIP Advances, 2016, 6, .	1.3	11
33	Semiâ€interpenetrating polymer networks based on crosslinked poly(<i>N</i> â€isopropyl acrylamide) and methylcellulose prepared by frontal polymerization. Journal of Polymer Science Part A, 2018, 56, 437-443.	2.3	10
34	Preparation and interaction study between fullerene and graphene in a polymeric matrix. Composites Science and Technology, 2015, 110, 217-223.	7.8	8
35	Protein films from black soldier fly (<scp><i>Hermetia illucens</i></scp> , Diptera: Stratiomyidae) prepupae: effect of protein solubility and mild crosslinking. Journal of the Science of Food and Agriculture, 2021, 101, 4506-4513.	3.5	8
36	Poly(ionic liquid)s derived from 3-octyl-1-vinylimidazolium bromide andN-isopropylacrylamide with tunable properties. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.3	7

DANIELE NUVOLI

#	Article	IF	CITATIONS
37	Preparation and characterization of polymeric nanocomposites containing exfoliated tungstenite at high concentrations. Composites Science and Technology, 2014, 96, 97-102.	7.8	5
38	Organic-inorganic materials through first simultaneous frontal polymerization and frontal geopolymerization. Materials Letters, 2021, 295, 129808.	2.6	3
39	Marble wastes recycling: Design and synthesis of low-temperature calcium silicate hydrate under various CaO:SiO2 ratio and alkalinity. Materialia, 2021, 20, 101224.	2.7	3
40	Synthesis and characterization of new polydiolcitrates with tunable properties. Journal of Polymer Science Part A, 2016, 54, 3713-3720.	2.3	2