
## Jeremie Lasue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955998/publications.pdf Version: 2024-02-01



IEDEMIE LASUE

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343,<br>1242777.                                                                                                                                       | 12.6 | 687       |
| 2  | Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.                                                                                                                                                           | 12.6 | 508       |
| 3  | The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Science Reviews, 2012, 170, 167-227.                                                                                               | 8.1  | 429       |
| 4  | The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Science Reviews, 2012, 170, 95-166.                                                                                       | 8.1  | 372       |
| 5  | Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.                                                                                                                                   | 12.6 | 367       |
| 6  | X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater.<br>Science, 2013, 341, 1238932.                                                                                                                         | 12.6 | 327       |
| 7  | Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.                                                                                                                                                                           | 12.6 | 326       |
| 8  | Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars.<br>Science, 2014, 343, 1245267.                                                                                                                          | 12.6 | 323       |
| 9  | Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.                                                                                                                                | 12.6 | 280       |
| 10 | Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown<br>spectroscopy instrument on the Mars Science Laboratory rover. Spectrochimica Acta, Part B: Atomic<br>Spectroscopy, 2013, 82, 1-27.                       | 2.9  | 258       |
| 11 | Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.                                                                                                                                        | 12.6 | 246       |
| 12 | lsotope Ratios of H, C, and O in CO <sub>2</sub> and H <sub>2</sub> O of the Martian Atmosphere.<br>Science, 2013, 341, 260-263.                                                                                                                       | 12.6 | 241       |
| 13 | In situ evidence for continental crust on early Mars. Nature Geoscience, 2015, 8, 605-609.                                                                                                                                                             | 12.9 | 233       |
| 14 | Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.                                                                                                                                                 | 12.6 | 215       |
| 15 | Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of<br>Geophysical Research E: Planets, 2014, 119, 1991-2016.                                                                                                    | 3.6  | 214       |
| 16 | Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. Journal of Geophysical Research, 2010, 115, .                                                                        | 3.3  | 200       |
| 17 | Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover<br>investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United<br>States of America, 2015, 112, 4245-4250. | 7.1  | 172       |
| 18 | The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.<br>Space Science Reviews, 2021, 217, 4.                                                                                                                | 8.1  | 160       |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 64-85.                                                     | 2.9  | 137       |
| 20 | The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.                                                                                                                                                | 12.6 | 134       |
| 21 | ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in<br>Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 2016, 31, 863-889.                                            | 3.0  | 134       |
| 22 | The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.                                                                                       | 8.1  | 131       |
| 23 | Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater. Journal of<br>Geophysical Research E: Planets, 2014, 119, 30-46.                                                                               | 3.6  | 114       |
| 24 | Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical<br>Research Letters, 2016, 43, 7398-7407.                                                                                    | 4.0  | 110       |
| 25 | Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.                                                                                                                                                     | 12.6 | 103       |
| 26 | Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth and<br>Planetary Science Letters, 2016, 452, 197-205.                                                                       | 4.4  | 103       |
| 27 | Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A24.                                                                                 | 5.1  | 100       |
| 28 | Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars. Icarus,<br>2017, 281, 121-136.                                                                                                       | 2.5  | 90        |
| 29 | Quantitative Assessments of the Martian Hydrosphere. Space Science Reviews, 2013, 174, 155-212.                                                                                                                                | 8.1  | 88        |
| 30 | Cometary Dust. Space Science Reviews, 2018, 214, 1.                                                                                                                                                                            | 8.1  | 88        |
| 31 | Cometary dust properties retrieved from polarization observations: Application to C/1995 O1<br>Hale–Bopp and 1P/Halley. Icarus, 2009, 199, 129-144.                                                                            | 2.5  | 86        |
| 32 | Trace element geochemistry (Li, Ba, Sr, and Rb) using <i>Curiosity</i> 's ChemCam: Early results for<br>Gale crater from Bradbury Landing Site to Rocknest. Journal of Geophysical Research E: Planets, 2014,<br>119, 255-285. | 3.6  | 86        |
| 33 | The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board <i>Curiosity</i> .<br>Journal of Geophysical Research E: Planets, 2016, 121, 784-804.                                                         | 3.6  | 67        |
| 34 | Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. Space Science Reviews, 2020, 216, 1.                                                                        | 8.1  | 67        |
| 35 | Independent component analysis classification of laser induced breakdown spectroscopy spectra.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 86, 31-41.                                                           | 2.9  | 66        |
| 36 | Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus, 2015, 249, 22-42.                                                                                           | 2.5  | 64        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars.<br>Journal of Geophysical Research E: Planets, 2017, 122, 2-20.                                                                          | 3.6 | 60        |
| 38 | Hydrogen detection with ChemCam at Gale crater. Icarus, 2015, 249, 43-61.                                                                                                                                                                    | 2.5 | 58        |
| 39 | Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates<br>in salt/basalt mixtures for the application to MSL ChemCam data. Journal of Geophysical Research E:<br>Planets, 2017, 122, 744-770. | 3.6 | 57        |
| 40 | Remote laserâ€induced breakdown spectroscopy (LIBS) for lunar exploration. Journal of Geophysical<br>Research, 2012, 117, .                                                                                                                  | 3.3 | 55        |
| 41 | Ceramic ChemCam Calibration Targets on Mars Science Laboratory. Space Science Reviews, 2012, 170, 229-255.                                                                                                                                   | 8.1 | 52        |
| 42 | ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus, 2015, 249, 2-21.                                                                                                                                                       | 2.5 | 52        |
| 43 | Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.                                                 | 3.6 | 51        |
| 44 | Interplanetary Dust, Meteoroids, Meteors and Meteorites. Space Science Reviews, 2019, 215, 1.                                                                                                                                                | 8.1 | 49        |
| 45 | Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. Journal of Geophysical Research E: Planets, 2017, 122, 650-679.                                                                    | 3.6 | 48        |
| 46 | Puncturing Mars: How impact craters interact with the Martian cryosphere. Earth and Planetary Science Letters, 2012, 335-336, 9-17.                                                                                                          | 4.4 | 46        |
| 47 | Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater. Journal of Geophysical Research E: Planets, 2017, 122, 2144-2162.                                                   | 3.6 | 46        |
| 48 | Correcting for variable laser-target distances of laser-induced breakdown spectroscopy<br>measurements with ChemCam using emission lines of Martian dust spectra. Spectrochimica Acta, Part<br>B: Atomic Spectroscopy, 2014, 96, 51-60.      | 2.9 | 45        |
| 49 | In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction<br>of Martian rock and soil compositions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99,<br>34-51.                         | 2.9 | 45        |
| 50 | SuperCam Calibration Targets: Design and Development. Space Science Reviews, 2020, 216, 138.                                                                                                                                                 | 8.1 | 44        |
| 51 | Nonlinear mapping technique for data visualization and clustering assessment of LIBS data:<br>application to ChemCam data. Analytical and Bioanalytical Chemistry, 2011, 400, 3247-3260.                                                     | 3.7 | 40        |
| 52 | Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, 2018, 45, 10,968.                                                                                                                                                       | 4.0 | 40        |
| 53 | Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.                                                                       | 2.9 | 40        |
| 54 | Volatile Trapping in Martian Clathrates. Space Science Reviews, 2013, 174, 213-250.                                                                                                                                                          | 8.1 | 39        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Inferring the interplanetary dust properties. Astronomy and Astrophysics, 2007, 473, 641-649.                                                                                                                                             | 5.1  | 35        |
| 56 | Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy. Spectrochimica<br>Acta, Part B: Atomic Spectroscopy, 2017, 137, 13-22.                                                                                  | 2.9  | 34        |
| 57 | Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars. Journal of Geophysical<br>Research E: Planets, 2016, 121, 338-352.                                                                                              | 3.6  | 32        |
| 58 | Characterization of Hydrogen in Basaltic Materials With Laserâ€Induced Breakdown Spectroscopy<br>( <scp>LIBS</scp> ) for Application to <scp>MSL</scp> ChemCam Data. Journal of Geophysical Research<br>E: Planets, 2018, 123, 1996-2021. | 3.6  | 32        |
| 59 | Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planetary and Space Science, 2019, 165, 260-271.                                                                                                       | 1.7  | 32        |
| 60 | In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.                                                                                                                                                                         | 27.8 | 30        |
| 61 | Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 120, 19-29.                                                                      | 2.9  | 27        |
| 62 | Dust in cometary comae: Present understanding of the structure and composition of dust particles.<br>Planetary and Space Science, 2008, 56, 1719-1724.                                                                                    | 1.7  | 26        |
| 63 | Early Mars serpentinizationâ€derived <scp>CH</scp> <sub>4</sub> reservoirs, H <sub>2</sub> â€induced warming and paleopressure evolution. Meteoritics and Planetary Science, 2016, 51, 2234-2245.                                         | 1.6  | 24        |
| 64 | Copper enrichments in the Kimberley formation in Gale crater, Mars: Evidence for a Cu deposit at the source. Icarus, 2019, 321, 736-751.                                                                                                  | 2.5  | 23        |
| 65 | SuperCam calibration targets on board the perseverance rover: Fabrication and quantitative characterization. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106341.                                                         | 2.9  | 20        |
| 66 | Methane storage capacity of the early martian cryosphere. Icarus, 2015, 260, 205-214.                                                                                                                                                     | 2.5  | 17        |
| 67 | Bedrock Geochemistry and Alteration History of the Clayâ€Bearing Glen Torridon Region of Gale Crater,<br>Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                   | 3.6  | 17        |
| 68 | Zodiacal light observations and its link with cosmic dust: A review. Planetary and Space Science, 2020,<br>190, 104973.                                                                                                                   | 1.7  | 14        |
| 69 | Flattened loose particles from numerical simulations compared to particles collected by Rosetta.<br>Astronomy and Astrophysics, 2019, 630, A28.                                                                                           | 5.1  | 11        |
| 70 | Laser-Induced Breakdown Spectroscopy (LIBS) characterization of granular soils: Implications for<br>ChemCam analyses at Gale crater, Mars. Icarus, 2021, 365, 114481.                                                                     | 2.5  | 11        |
| 71 | Interpretation through experimental simulations of phase functions revealed by Rosetta in 67P/Churyumov-Gerasimenko dust coma. Astronomy and Astrophysics, 2019, 630, A20.                                                                | 5.1  | 9         |
| 72 | Linking studies of tiny meteoroids, zodiacal dust, cometary dust and circumstellar disks. Planetary<br>and Space Science, 2020, 186, 104896.                                                                                              | 1.7  | 9         |

| #  | Article                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance. Analytica<br>Chimica Acta, 2022, 1209, 339837. | 5.4 | 9         |
| 74 | The Hydrology of Mars Including a Potential Cryosphere. , 2019, , 185-246.                                                            |     | 7         |
| 75 | Clustering Supported Classification of ChemCam Data From Gale Crater, Mars. Earth and Space<br>Science, 2021, 8, .                    | 2.6 | 7         |
| 76 | Laser-induced breakdown spectroscopy in planetary science. , 2020, , 441-471.                                                         |     | 4         |