Neil S Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955273/publications.pdf

Version: 2024-02-01

159585 189892 5,508 51 30 50 citations h-index g-index papers 52 52 52 7136 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnesium and calcium overaccumulate in the leaves of a <i>schengen3</i> mutant of <i>Brassica rapa</i> . Plant Physiology, 2021, 186, 1616-1631.	4.8	11
2	Magnesium biofortification of Italian ryegrass (Lolium multiflorum L.) via agronomy and breeding as a potential way to reduce grass tetany in grazing ruminants. Plant and Soil, 2020, 457, 25-41.	3.7	11
3	Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. Plant Molecular Biology, 2019, 101, 65-79.	3.9	28
4	Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Scientific Reports, 2019, 9, 1983.	3.3	49
5	Infestation by Myzus persicae Increases Susceptibility of Brassica napus cv. "Canard―to Rhizoctonia solani AG 2-1. Frontiers in Plant Science, 2018, 9, 1903.	3.6	2
6	Species-Wide Variation in Shoot Nitrate Concentration, and Genetic Loci Controlling Nitrate, Phosphorus and Potassium Accumulation in Brassica napus L Frontiers in Plant Science, 2018, 9, 1487.	3.6	22
7	A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat. BMC Plant Biology, 2018, 18, 115.	3.6	36
8	Physiological profile of CAX1a TILLING mutants of Brassica rapa exposed to different calcium doses. Plant Science, 2018, 272, 164-172.	3.6	11
9	Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape. Plant Methods, 2017, 13, 45.	4.3	19
10	Identification of Candidate Genes for Calcium and Magnesium Accumulation in Brassica napus L. by Association Genetics. Frontiers in Plant Science, 2017, 8, 1968.	3.6	39
11	A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut. Genes, 2017, 8, 84.	2.4	19
12	Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline. Plant Methods, 2017, 13, 57.	4.3	11
13	Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biology, 2016, 16, 214.	3.6	88
14	QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Scientific Reports, 2016, 6, 33113.	3.3	55
15	High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (<i>Brassica napus</i> L.). Annals of Botany, 2016, 118, 655-665.	2.9	78
16	Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. Journal of Plant Physiology, 2015, 176, 16-24.	3.5	48
17	Genetical and Comparative Genomics of <i>Brassica</i> under Altered Ca Supply Identifies <i>Arabidopsis</i> Ca-Transporter Orthologs Â. Plant Cell, 2014, 26, 2818-2830.	6.6	40
18	Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver. PLoS ONE, 2013, 8, e68933.	2.5	57

#	Article	IF	Citations
19	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	6.6	155
20	High-Resolution Mapping of a Fruit Firmness-Related Quantitative Trait Locus in Tomato Reveals Epistatic Interactions Associated with a Complex Combinatorial Locus Â. Plant Physiology, 2012, 159, 1644-1657.	4.8	83
21	Adenosine Methylation in Arabidopsis mRNA is Associated with the 3′ End and Reduced Levels Cause Developmental Defects. Frontiers in Plant Science, 2012, 3, 48.	3.6	213
22	Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply. Annals of Botany, 2012, 109, 1081-1089.	2.9	43
23	Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray. BMC Plant Biology, 2012, 12, 242.	3.6	41
24	A Role for Nonsense-Mediated mRNA Decay in Plants: Pathogen Responses Are Induced in Arabidopsis thaliana NMD Mutants. PLoS ONE, 2012, 7, e31917.	2.5	114
25	High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods, 2011, 7, 43.	4.3	79
26	Use of the Affymetrix Human GeneChip array and genomic DNA hybridisation probe selection to study ovine transcriptomes. Animal, 2011, 5, 861-866.	3.3	11
27	Agronomic and molecular analysis of heterosis in alfalfa. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 288-290.	0.8	3
28	Regulatory Hotspots Are Associated with Plant Gene Expression under Varying Soil Phosphorus Supply in <i>Brassica rapa</i> Â Â Â. Plant Physiology, 2011, 156, 1230-1241.	4.8	60
29	<i>Medicago truncatula</i> CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins. Plant Cell, 2011, 23, 3070-3081.	6.6	190
30	Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens. PLoS ONE, 2011, 6, e17814.	2.5	112
31	Differential Yeast Gene Transcription during Brewery Propagation. Journal of the American Society of Brewing Chemists, 2010, 68, 21-29.	1.1	6
32	Equine transcriptome quantification using human GeneChip arrays can be improved using genomic DNA hybridisation and probe selection. Veterinary Journal, 2010, 186, 323-327.	1.7	5
33	A Brassica Exon Array for Whole-Transcript Gene Expression Profiling. PLoS ONE, 2010, 5, e12812.	2.5	27
34	Cytokinin Regulation of Auxin Synthesis in <i>Arabidopsis</i> Involves a Homeostatic Feedback Loop Regulated via Auxin and Cytokinin Signal Transduction Â. Plant Cell, 2010, 22, 2956-2969.	6.6	247
35	On the causes of outliers in Affymetrix GeneChip data. Briefings in Functional Genomics & Proteomics, 2009, 8, 199-212.	3.8	24
36	Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa. BMC Genomics, 2009, 10, 436.	2.8	56

#	Article	IF	Citations
37	Lowâ€intensity microwave irradiation does not substantially alter gene expression in late larval and adult <i>Caenorhabditis elegans</i>). Bioelectromagnetics, 2009, 30, 602-612.	1.6	12
38	Effect of tomato pleiotropic ripening mutations on flavour volatile biosynthesis. Phytochemistry, 2009, 70, 1003-1008.	2.9	42
39	Amino Acid Uptake and Yeast Gene Transcription during Industrial Brewery Fermentation. Journal of the American Society of Brewing Chemists, 2009, 67, 157-165.	1.1	27
40	Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation. Yeast, 2008, 25, 549-562.	1.7	40
41	Evidence of neutral transcriptome evolution in plants. New Phytologist, 2008, 180, 587-593.	7. 3	30
42	The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Research, 2008, 8, 574-585.	2.3	55
43	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	10.3	715
44	Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell, 2008, 19, 3889-3900.	6.6	498
45	Optimising the analysis of transcript data using high density oligonucleotide arrays and genomic DNA-based probe selection. BMC Genomics, 2007, 8, 344.	2.8	11
46	Dissecting Arabidopsis lateral root development. Trends in Plant Science, 2003, 8, 165-171.	8.8	618
47	Auxin cross-talk: integration of signalling pathways to control plant development. , 2002, 49, 411-426.		125
48	Auxin cross-talk: integration of signalling pathways to control plant development. Plant Molecular Biology, 2002, 49, 409-424.	3.9	170
49	Quick on the Uptake: Characterization of a Family of Plant Auxin Influx Carriers. Journal of Plant Growth Regulation, 2001, 20, 217-225.	5.1	101
50	Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell, 2001, 13, 843-852.	6.6	930
51	Cell marking inArabidopsis thaliana andits application to patch-clamp studies. Plant Journal, 1998, 15, 843-851.	5.7	40