Santo Scalia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955255/publications.pdf

Version: 2024-02-01

236925 315739 1,507 43 25 38 h-index citations g-index papers 43 43 43 1748 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Photostabilization Effect of Quercetin on the UV Filter Combination, Butyl Methoxydibenzoylmethane–Octyl Methoxycinnamate. Photochemistry and Photobiology, 2010, 86, 273-278.	2.5	88
2	Solid lipid microparticles as an approach to drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 583-599.	5. 0	82
3	Incorporation of quercetin in lipid microparticles: Effect on photo- and chemical-stability. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 90-94.	2.8	67
4	Solid Lipid Budesonide Microparticles for Controlled Release Inhalation Therapy. AAPS Journal, 2009, 11, 771-778.	4.4	64
5	Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 250-259.	4.3	64
6	Comparative studies of the influence of cyclodextrins on the stability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30, 1181-1189.	2.8	60
7	Complexation of the sunscreen agent, phenylbenzimidazole sulphonic acid with cyclodextrins: effect on stability and photo-induced free radical formation. European Journal of Pharmaceutical Sciences, 2004, 22, 241-249.	4.0	58
8	Quercetin solid lipid microparticles: A flavonoid for inhalation lung delivery. European Journal of Pharmaceutical Sciences, 2013, 49, 278-285.	4.0	53
9	Inclusion Complexation of the Sunscreen Agent 2-Ethylhexyl-p-dimethylaminobenzoate with Hydroxypropyl-Î ² -cyclodextrin: Effect on Photostability. Journal of Pharmacy and Pharmacology, 2010, 51, 1367-1374.	2.4	51
10	Determination of Vitamin A, Vitamin E, and Their Esters in Tablet Preparations Using Supercritical Fluid Extraction and HPLC. Journal of Pharmaceutical Sciences, 1995, 84, 433-436.	3.3	47
11	Incorporation of the sunscreen agent, octyl methoxycinnamate in a cellulosic fabric grafted with \hat{i}^2 -cyclodextrin. International Journal of Pharmaceutics, 2006, 308, 155-159.	5. 2	47
12	Comparative Evaluation of Different Co-Antioxidants on the Photochemical- and Functional-Stability of Epigallocatechin-3-gallate in Topical Creams Exposed to Simulated Sunlight. Molecules, 2013, 18, 574-587.	3.8	47
13	Brain Uptake of a Zidovudine Prodrug after Nasal Administration of Solid Lipid Microparticles. Molecular Pharmaceutics, 2014, 11, 1550-1561.	4.6	47
14	Influence of liposphere preparation on butyl-methoxydibenzoylmethane photostability. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 140-145.	4.3	46
15	Encapsulation in lipospheres of the complex between butyl methoxydibenzoylmethane and hydroxypropyl-β-cyclodextrin. International Journal of Pharmaceutics, 2006, 320, 79-85.	5. 2	45
16	Photodegradation of (\hat{a}^{-1}) -epigallocatechin-3-gallate in topical cream formulations and its photostabilization. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 692-697.	2.8	45
17	Solid lipid microparticles containing the sunscreen agent, octyl-dimethylaminobenzoate: Effect of the vehicle. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 483-487.	4.3	41
18	Assay of common sunscreen agents in suncare products by high-performance liquid chromatography on a cyanopropyl-bonded silica column. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 250-255.	2.8	38

#	Article	IF	Citations
19	Enhancement of melatonin photostability by encapsulation in lipospheres. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 910-914.	2.8	37
20	Enhancement of the in vitro penetration of quercetin through pig skin by combined microneedles and lipid microparticles. International Journal of Pharmaceutics, 2014, 472, 206-213.	5.2	36
21	Enhancement of in vivo human skin penetration of resveratrol by chitosan-coated lipid microparticles. Colloids and Surfaces B: Biointerfaces, 2015, 135, 42-49.	5.0	36
22	Co-spray dried resveratrol and budesonide inhalation formulation for reducing inflammation and oxidative stress in rat alveolar macrophages. European Journal of Pharmaceutical Sciences, 2016, 86, 20-28.	4.0	35
23	Evaluation of spray congealing as technique for the preparation of highly loaded solid lipid microparticles containing the sunscreen agent, avobenzone. Journal of Pharmaceutical Sciences, 2009, 98, 2759-2769.	3.3	34
24	Complexation of the sunscreen agent, 4-methylbenzylidene camphor with cyclodextrins: Effect on photostability and human stratum corneum penetration. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44, 29-34.	2.8	33
25	In vitro biological activity of resveratrol using a novel inhalable resveratrol spray-dried formulation. International Journal of Pharmaceutics, 2015, 491, 190-197.	5.2	32
26	Influence of hydroxypropyl-β-cyclodextrin on photo-induced free radical production by the sunscreen agent, butyl-methoxydibenzoylmethane. Journal of Pharmacy and Pharmacology, 2010, 54, 1553-1558.	2.4	30
27	Incorporation in Lipid Microparticles of the UVA Filter, Butyl Methoxydibenzoylmethane Combined with the UVB Filter, Octocrylene: Effect on Photostability. AAPS PharmSciTech, 2009, 10, 384-390.	3.3	29
28	Influence of solid lipid microparticle carriers on skin penetration of the sunscreen agent, 4-methylbenzylidene camphor. Journal of Pharmacy and Pharmacology, 2010, 59, 1621-1627.	2.4	23
29	Microencapsulation of a cyclodextrin complex of the UV filter, butyl methoxydibenzoylmethane: In vivo skin penetration studies. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 345-350.	2.8	23
30	Preparation and <i>in vitro </i> evaluation of salbutamol-loaded lipid microparticles for sustained release pulmonary therapy. Journal of Microencapsulation, 2012, 29, 225-233.	2.8	22
31	Influence of Cyclodextrin Complexation on the in vitro Human Skin Penetration and Retention of the Sunscreen Agent, Oxybenzone. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 54, 275-282.	1.6	19
32	Incorporation of quercetin in respirable lipid microparticles: Effect on stability and cellular uptake on A549 pulmonary alveolar epithelial cells. Colloids and Surfaces B: Biointerfaces, 2013, 112, 322-329.	5.0	18
33	Co-loading of a Photostabilizer with the Sunscreen Agent, Butyl Methoxydibenzoylmethane in Solid Lipid Microparticles. Drug Development and Industrial Pharmacy, 2009, 35, 192-198.	2.0	16
34	In vivo penetration of bare and lipid-coated silica nanoparticles across the human stratum corneum. Colloids and Surfaces B: Biointerfaces, 2014, 122, 653-661.	5.0	15
35	Solid Lipid Microparticles for the Stability Enhancement of a Dopamine Prodrug. Journal of Pharmaceutical Sciences, 2010, 99, 4730-4737.	3.3	14
36	Comparison of spray congealing and melt emulsification methods for the incorporation of the water-soluble salbutamol sulphate in lipid microparticles. Pharmaceutical Development and Technology, 2013, 18, 266-273.	2.4	14

SANTO SCALIA

#	Article	IF	CITATION
37	Influence of lipid microparticle encapsulation on <i>in vitro</i> efficacy, photostability and water resistance of the sunscreen agents, octyl methoxycinnamate and butyl methoxydibenzoylmethane. Drug Development and Industrial Pharmacy, 2014, 40, 1233-1239.	2.0	13
38	Resveratrol solid lipid microparticles as dry powder formulation for nasal delivery, characterization and <i>in vitro </i> deposition study. Journal of Microencapsulation, 2016, 33, 735-742.	2.8	12
39	Effect of complexation with randomly methylated \hat{l}^2 -cyclodextrin on the aqueous solubility, photostability and antioxidant activity of an indolinonic nitroxide radical. Free Radical Research, 2005, 39, 41-49.	3.3	11
40	Pulmonary delivery systems for polyphenols. Drug Development and Industrial Pharmacy, 2017, 43, 1043-1052.	2.0	7
41	In vivo Human Skin Penetration of the UV Filter Ethylhexyl Triazone: Effect of Lipid Microparticle Encapsulation. Skin Pharmacology and Physiology, 2019, 32, 22-31.	2.5	7
42	Incorporation in Lipid Microparticles of Acid Red 87, a Colorant Used in Tattoo Inks: Effect on Photodegradation Under Simulated Sunlight and Laser Radiation. Photochemistry and Photobiology, 2020, 96, 998-1004.	2.5	1
43	Glyceryl Tristearate-Based Lipid Microparticles Loaded with the Tattoo Colorant, Acid Red 87: Colorant Retention Capacity in Excised Porcine Skin. Skin Pharmacology and Physiology, 2020, 33, 1-8.	2.5	O