
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1954929/publications.pdf Version: 2024-02-01

ΙΟΗΝ Μ/ ΗΛΝΡΛΗΛΝ

#	Article	lF	CITATIONS
1	Lipid-driven CFTR clustering is impaired in cystic fibrosis and restored by corrector drugs. Journal of Cell Science, 2022, 135, .	2.0	9
2	Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A. Cells, 2022, 11, 136.	4.1	11
3	The NSAID glafenine rescues class 2 CFTR mutants via cyclooxygenase 2 inhibition of the arachidonic acid pathway. Scientific Reports, 2022, 12, 4595.	3.3	6
4	Macrocycle-stabilization of its interaction with 14-3-3 increases plasma membrane localization and activity of CFTR. Nature Communications, 2022, 13, .	12.8	13
5	Large pH oscillations promote host defense against human airways infection. Journal of Experimental Medicine, 2021, 218, .	8.5	18
6	Oxygenation as a driving factor in epithelial differentiation at the air–liquid interface. Integrative Biology (United Kingdom), 2021, 13, 61-72.	1.3	8
7	Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. , 2021, 224, 107826.		14
8	CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells. Frontiers in Physiology, 2021, 12, 619442.	2.8	25
9	Nonspecific binding of common anti-CFTR antibodies in ciliated cells of human airway epithelium. Scientific Reports, 2021, 11, 23256.	3.3	10
10	Phosphodiesterase 8A Regulates CFTR Activity in Airway Epithelial Cells. Cellular Physiology and Biochemistry, 2021, 55, 784-804.	1.6	5
11	Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158538.	2.4	8
12	The Phosphodiesterase Inhibitor Ensifentrine Reduces Production of Proinflammatory Mediators in Well Differentiated Bronchial Epithelial Cells by Inhibiting PDE4. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 414-429.	2.5	12
13	Changes in the Râ€region interactions depend on phosphorylation and contribute to PKA and PKC regulation of the cystic fibrosis transmembrane conductance regulator chloride channel. FASEB BioAdvances, 2020, 2, 33-48.	2.4	3
14	The dual phosphodiesterase 3/4 inhibitor RPL554 stimulates rare class III and IV CFTR mutants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L908-L920.	2.9	11
15	Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR. Biochemical Pharmacology, 2020, 180, 114133.	4.4	14
16	Hsp70 and DNAJA2 limit CFTR levels through degradation. PLoS ONE, 2019, 14, e0220984.	2.5	19
17	Bioactive Thymosin Alpha-1 Does Not Influence F508del-CFTR Maturation and Activity. Scientific Reports, 2019, 9, 10310.	3.3	8
18	Magnetic microboats for floating, stiffness tunable, air–liquid interface epithelial cultures. Lab on A Chip, 2019, 19, 2786-2798.	6.0	15

#	Article	IF	CITATIONS
19	The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del–CFTR. Journal of Biological Chemistry, 2019, 294, 18269-18284.	3.4	17
20	Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets Expert Opinion on Therapeutic Targets, 2019, 23, 711-724.	3.4	7
21	Agonists that stimulate secretion promote the recruitment of CFTR into membrane lipid microdomains. Journal of General Physiology, 2019, 151, 834-849.	1.9	21
22	Pendrin Mediates Bicarbonate Secretion and Enhances Cystic Fibrosis Transmembrane Conductance Regulator Function in Airway Surface Epithelia. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 705-716.	2.9	42
23	Pendrin Mediates Bicarbonate Secretion and Enhances CFTR Function in Airway Surface Epithelia. FASEB Journal, 2019, 33, 544.16.	0.5	1
24	Most bicarbonate secretion by Calu-3 cells is mediated by CFTR and independent of pendrin. Physiological Reports, 2018, 6, e13641.	1.7	15
25	Cigarette smoke activates CFTR through ROS-stimulated cAMP signaling in human bronchial epithelial cells. American Journal of Physiology - Cell Physiology, 2018, 314, C118-C134.	4.6	18
26	Variable Responses to CFTR Correctors in vitro: Estimating the Design Effect in Precision Medicine. Frontiers in Pharmacology, 2018, 9, 1490.	3.5	17
27	F508del-CFTR is not corrected by thymosin $\hat{I}\pm 1$. Nature Medicine, 2018, 24, 890-891.	30.7	7
28	Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series. Methods, 2018, 140-141, 126-139.	3.8	6
29	A novel triple combination of pharmacological chaperones improves F508del-CFTR correction. Scientific Reports, 2018, 8, 11404.	3.3	27
30	Thymosin $\hat{l}\pm 1$: a single drug with multiple targets in cystic fibrosis. Nature Medicine, 2017, 23, 536-538.	30.7	2
31	Velocity Landscapes Resolve Multiple Dynamical Populations from Fluorescence Image Time Series. Biophysical Journal, 2017, 112, 296a.	0.5	1
32	PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. International Journal of Pharmaceutics, 2017, 524, 382-396.	5.2	48
33	Corrector combination therapies for F508del-CFTR. Current Opinion in Pharmacology, 2017, 34, 105-111.	3.5	27
34	Fenretinide differentially modulates the levels of long- and very long-chain ceramides by downregulating Cers5 enzyme: evidence from bench to bedside. Journal of Molecular Medicine, 2017, 95, 1053-1064.	3.9	34
35	Development of Automated Patch Clamp Technique to Investigate CFTR Chloride Channel Function. Frontiers in Pharmacology, 2017, 8, 195.	3.5	17
36	Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VXâ€770 (ivacaftor). British Journal of Pharmacology, 2016, 173, 459-470.	5.4	60

#	Article	IF	CITATIONS
37	Mapping CFTR Clusters in 3D via Single Molecule Step Photobleaching Analysis in Epithelial Cells. Biophysical Journal, 2016, 110, 484a.	0.5	0
38	l² ₂ -Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis. European Respiratory Journal, 2016, 48, 768-779.	6.7	28
39	Latonduine Analogs Restore F508del–Cystic Fibrosis Transmembrane Conductance Regulator Trafficking through the Modulation of Poly-ADP Ribose Polymerase 3 and Poly-ADP Ribose Polymerase 16 Activity. Molecular Pharmacology, 2016, 90, 65-79.	2.3	24
40	Potential sites of CFTR activation by tyrosine kinases. Channels, 2016, 10, 247-251.	2.8	13
41	The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L59-L70.	2.9	32
42	Investigating CFTR and KCa3.1 Protein/Protein Interactions. PLoS ONE, 2016, 11, e0153665.	2.5	11
43	Z-Profiling of CFTR Oligomerization State Distributions via Single Molecule Step Photobleaching Analysis in Epithelial Cells. Biophysical Journal, 2015, 108, 322a.	0.5	Ο
44	Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells. Biophysical Journal, 2015, 109, 85-94.	0.5	58
45	Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation. FASEB Journal, 2015, 29, 3945-3953.	0.5	21
46	The Role of ROS in Tethering CFTR within Ceramide Platforms at the Plasma Membrane. Biophysical Journal, 2015, 108, 126a-127a.	0.5	0
47	lbuprofen rescues mutant cystic fibrosis transmembrane conductance regulator trafficking. Journal of Cystic Fibrosis, 2015, 14, 16-25.	0.7	44
48	Polymer assisted entrapment of netilmicin in PLGA nanoparticles for sustained antibacterial activity. Journal of Microencapsulation, 2015, 32, 61-74.	2.8	12
49	The buffer capacity of airway epithelial secretions. Frontiers in Physiology, 2014, 5, 188.	2.8	28
50	CFTR Clustering and Tethering in Ceramide-Platforms in Response to Post-Infection PKC Stimulation. Biophysical Journal, 2014, 106, 627a.	0.5	1
51	Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines. Orphanet Journal of Rare Diseases, 2013, 8, 11.	2.7	36
52	Role of Cftr in Host Defence Against Pseudomonas Aeruginosa. Biophysical Journal, 2013, 104, 680a.	0.5	1
53	Novel pharmacological strategies to treat cystic fibrosis. Trends in Pharmacological Sciences, 2013, 34, 119-125.	8.7	86
54	Role of Tyrosine Phosphorylation in the Muscarinic Activation of the Cystic Fibrosis Transmembrane Conductance Regulator (CETR), Journal of Biological Chemistry, 2013, 288, 21815-21823	3.4	33

#	Article	IF	CITATIONS
55	Correctors of the basic trafficking defect of the mutant F508del-CFTR that causes cystic fibrosis. Current Opinion in Chemical Biology, 2013, 17, 353-360.	6.1	30
56	Cystic Fibrosis Transmembrane Conductance Regulator Is Expressed in Mucin Granules from Calu-3 and Primary Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 511-516.	2.9	16
57	The secret life of CFTR as a calciumâ€activated chloride channel. Journal of Physiology, 2013, 591, 5273-5278.	2.9	71
58	Physiology of Epithelial Chloride and Fluid Secretion. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009563-a009563.	6.2	190
59	Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Molecular Biology of the Cell, 2012, 23, 4188-4202.	2.1	96
60	Correction of F508del-CFTR Trafficking by the Sponge Alkaloid Latonduine Is Modulated by Interaction with PARP. Chemistry and Biology, 2012, 19, 1288-1299.	6.0	42
61	Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Caluâ€3. Journal of Physiology, 2012, 590, 5299-5316.	2.9	26
62	Decreasing Poly(ADP-Ribose) Polymerase Activity Restores ΔF508 CFTR Trafficking. Frontiers in Pharmacology, 2012, 3, 165.	3.5	14
63	Ouabain Mimics Low Temperature Rescue of F508del-CFTR in Cystic Fibrosis Epithelial Cells. Frontiers in Pharmacology, 2012, 3, 176.	3.5	34
64	Bicarbonateâ€dependent chloride transport drives fluid secretion by the human airway epithelial cell line Caluâ€3. Journal of Physiology, 2012, 590, 5273-5297.	2.9	37
65	Bicarbonateâ€dependent chloride transport drives fluid secretion by the human airway epithelial cell line Caluâ€3. FASEB Journal, 2012, 26, 1152.23.	0.5	0
66	Anion secretion by a model epithelium: more lessons from Caluâ€3. Acta Physiologica, 2011, 202, 523-531.	3.8	27
67	Identification of a NBD1-Binding Pharmacological Chaperone that Corrects the Trafficking Defect of F508del-CFTR. Chemistry and Biology, 2011, 18, 231-242.	6.0	91
68	Enhanced Ca ²⁺ entry due to Orai1 plasma membrane insertion increases ILâ€8 secretion by cystic fibrosis airways. FASEB Journal, 2011, 25, 4274-4291.	0.5	51
69	Measurement of Fluid Secretion from Intact Airway Submucosal Glands. Methods in Molecular Biology, 2011, 742, 93-112.	0.9	14
70	Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. Journal of Physiology, 2010, 588, 1195-1209.	2.9	82
71	Correction of the ΔPhe508 Cystic Fibrosis Transmembrane Conductance Regulator Trafficking Defect by the Bioavailable Compound Glafenine. Molecular Pharmacology, 2010, 77, 922-930.	2.3	86
72	Lack of CFTR in Skeletal Muscle Predisposes to Muscle Wasting and Diaphragm Muscle Pump Failure in Cystic Fibrosis Mice. PLoS Genetics, 2009, 5, e1000586.	3.5	99

#	Article	IF	CITATIONS
73	Role of the Cystic Fibrosis Transmembrane Conductance Channel in Human Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 217-222.	2.9	55
74	Trafficking of immature ΔF508-CFTR to the plasma membrane and its detection by biotinylation. Biochemical Journal, 2009, 419, 211-221.	3.7	24
75	Substance P stimulates CFTR-dependent fluid secretion by mouse tracheal submucosal glands. Pflugers Archiv European Journal of Physiology, 2008, 457, 529-537.	2.8	32
76	BAP31 Interacts with Sec61 Translocons and Promotes Retrotranslocation of CFTRΔF508 via the Derlin-1 Complex. Cell, 2008, 133, 1080-1092.	28.9	142
77	PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR. American Journal of Physiology - Cell Physiology, 2008, 295, C1366-C1375.	4.6	27
78	Structural Analog of Sildenafil Identified as a Novel Corrector of the F508del-CFTR Trafficking Defect. Molecular Pharmacology, 2008, 73, 478-489.	2.3	113
79	Vasoactive Intestinal Peptide Increases Cystic Fibrosis Transmembrane Conductance Regulator Levels in the Apical Membrane of Calu-3 Cells through a Protein Kinase C-Dependent Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 226-238.	2.5	20
80	Correctors of Protein Trafficking Defects Identified by a Novel High-Throughput Screening Assay. ChemBioChem, 2007, 8, 1012-1020.	2.6	104
81	Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice. Journal of Physiology, 2007, 580, 301-314.	2.9	59
82	Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis. Journal of Clinical Investigation, 2007, 117, 3118-3127.	8.2	85
83	Investigating membrane protein dynamics in living cellsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease Biochemistry and Cell Biology, 2006, 84, 825-831.	2.0	37
84	Membrane Lateral Diffusion and Capture of CFTR within Transient Confinement Zones. Biophysical Journal, 2006, 91, 1046-1058.	0.5	81
85	Oxidant stress suppresses CFTR expression. American Journal of Physiology - Cell Physiology, 2006, 290, C262-C270.	4.6	98
86	Cystic Fibrosis Transmembrane Conductance Regulator Function Is Suppressed in Cigarette Smokers. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1139-1144.	5.6	252
87	Apical membrane insertion of CFTR is increased by protein kinase C activation. FASEB Journal, 2006, 20, .	0.5	0
88	Th2 driven anion conductance in airway epithelium is lost in the mCLCA3 knockout mouse. FASEB Journal, 2006, 20, A348.	0.5	0
89	Phosphorylation of CFTR by PKA promotes binding of the regulatory domain. EMBO Journal, 2005, 24, 2730-2740.	7.8	73
90	Revisiting Cystic Fibrosis Transmembrane Conductance Regulator Structure and Function. Proceedings of the American Thoracic Society, 2004, 1, 17-21.	3.5	28

#	Article	IF	CITATIONS
91	Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 390-395.	7.1	74
92	Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. Journal of Immunology, 2004, 173, 2909-2912.	0.8	1,393
93	THE CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (ABCC7). , 2003, , 589-618.		24
94	A haplotype-based molecular analysis of CFTR mutations associated with respiratory and pancreatic diseases. Human Molecular Genetics, 2003, 12, 2321-2332.	2.9	99
95	A macromolecular complex of Â2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 342-346.	7.1	203
96	Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. Journal of Physiology, 2003, 548, 39-52.	2.9	86
97	ATP release from human airway epithelial cells studied using a capillary cell culture system. Journal of Physiology, 2002, 545, 199-206.	2.9	63
98	Mutagenesis Identifies Amino Acid Residues in Extracellular Loops and within the Barrel Lumen That Determine Voltage Gating of Porin fromHaemophilus influenzaeType bâ€. Biochemistry, 2001, 40, 14621-14628.	2.5	19
99	Asymmetric Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore Suggested by Mutagenesis of the Twelfth Transmembrane Regionâ€. Biochemistry, 2001, 40, 6620-6627.	2.5	39
100	Regulation of the CFTR channel by phosphorylation. Pflugers Archiv European Journal of Physiology, 2001, 443, S92-S96.	2.8	63
101	Role of protein phosphatases in the activation of CFTR (ABCC7) by genistein and bromotetramisole. American Journal of Physiology - Cell Physiology, 2000, 279, C108-C119.	4.6	22
102	Molecular Determinants of Anion Selectivity in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Biophysical Journal, 2000, 78, 2973-2982.	0.5	90
103	Airway plumbing. Journal of Clinical Investigation, 2000, 105, 1343-1344.	8.2	2
104	Association of Cystic Fibrosis Transmembrane Conductance Regulator and Protein Phosphatase 2C. Journal of Biological Chemistry, 1999, 274, 29102-29107.	3.4	53
105	Substrates of multidrug resistanceâ€associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel. British Journal of Pharmacology, 1999, 126, 1471-1477.	5.4	38
106	Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Clâ^'channel expressed in mammalian cell lines. Journal of Physiology, 1998, 512, 1-16.	2.9	69
107	Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel. Journal of Physiology, 1998, 508, 365-377.	2.9	72
108	Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel. British Journal of Pharmacology, 1998, 123, 683-693.	5.4	56

#	Article	IF	CITATIONS
109	The CFTR Chloride Channel: Nucleotide Interactions and Temperature-dependent Gating. Journal of Membrane Biology, 1998, 163, 55-66.	2.1	47
110	Adenosine Triphosphate–dependent Asymmetry of Anion Permeation in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Journal of General Physiology, 1998, 111, 601-614.	1.9	138
111	[11] Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel. Methods in Enzymology, 1998, 293, 169-194.	1.0	18
112	Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases. American Journal of Physiology - Cell Physiology, 1998, 274, C1397-C1410.	4.6	91
113	Glutathione permeability of CFTR. American Journal of Physiology - Cell Physiology, 1998, 275, C323-C326.	4.6	244
114	Halide Permeation in Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels. Journal of General Physiology, 1997, 110, 341-354.	1.9	104
115	Permeability of Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels to Polyatomic Anions. Journal of General Physiology, 1997, 110, 355-364.	1.9	199
116	Phosphorylation by Protein Kinase C Is Required For Acute Activation of Cystic Fibrosis Transmembrane Conductance Regulator by Protein Kinase A. Journal of Biological Chemistry, 1997, 272, 4978-4984.	3.4	174
117	Multi-Ion Mechanism for Ion Permeation and Block in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Journal of General Physiology, 1997, 110, 365-377.	1.9	83
118	Disease-Associated Mutations in Cytoplasmic Loops 1 and 2 of Cystic Fibrosis Transmembrane Conductance Regulator Impede Processing or Opening of the Channelâ€. Biochemistry, 1997, 36, 11966-11974.	2.5	73
119	Failure of the Cystic Fibrosis Transmembrane Conductance Regulator to Conduct ATP. Science, 1996, 271, 1876-1879.	12.6	184
120	CFTR Channels Expressed in CHO Cells Do Not Have Detectable ATP Conductance. Journal of Membrane Biology, 1996, 151, 139-148.	2.1	86
121	Disease-associated Mutations in the Fourth Cytoplasmic Loop of Cystic Fibrosis Transmembrane Conductance Regulator Compromise Biosynthetic Processing and Chloride Channel Activity. Journal of Biological Chemistry, 1996, 271, 15139-15145.	3.4	105
122	cAMP- and Ca2+-independent Activation of Cystic Fibrosis Transmembrane Conductance Regulator Channels by Phenylimidazothiazole Drugs. Journal of Biological Chemistry, 1996, 271, 16171-16179.	3.4	49
123	Cytoplasmic Loop Three of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Regulation of Chloride Channel Activity. Journal of Biological Chemistry, 1996, 271, 27493-27499.	3.4	93
124	Plasma Membrane Na+/H+ Exchanger Isoforms (NHE-1, -2, and -3) Are Differentially Responsive to Second Messenger Agonists of the Protein Kinase A and C Pathways. Journal of Biological Chemistry, 1995, 270, 29209-29216.	3.4	121
125	cAMP-dependent Protein Kinase-mediated Phosphorylation of Cystic Fibrosis Transmembrane Conductance Regulator Residue Ser-753 and Its Role in Channel Activation. Journal of Biological Chemistry, 1995, 270, 2158-2162.	3.4	88
126	Regulation of an inwardly rectifying K channel in the T84 epithelial cell line by calcium, nucleotides and kinases. Journal of Membrane Biology, 1994, 142, 255-66.	2.1	29

#	Article	IF	CITATIONS
127	Phosphatase inhibitors activate normal and defective CFTR chloride channels Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9160-9164.	7.1	156
128	Multi-ion pore behaviour in the CFTR chloride channel. Nature, 1993, 366, 79-82.	27.8	246
129	Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell, 1991, 64, 681-691.	28.9	531
130	Phosphorylation-regulated Clâ´' channel in CHO cells stably expressing the cystic fibrosis gene. Nature, 1991, 352, 628-631.	27.8	565
131	Inhibition of an outwardly rectifying anion channel by HEPES and related buffers. Journal of Membrane Biology, 1990, 116, 65-77.	2.1	78
132	Low-conductance chloride channel activated by cAMP in the epithelial cell line T84. FEBS Letters, 1990, 270, 157-164.	2.8	164
133	Transformed sweat gland and nasal epithelial cell lines from control and cystic fibrosis individuals. Journal of Cell Science, 1990, 95, 109-123.	2.0	28
134	Bicarbonate permeability of the outwardly rectifying anion channel. Journal of Membrane Biology, 1989, 112, 109-122.	2.1	72
135	Single anion-selective channels in basolateral membrane of a mammalian tight epithelium Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 7791-7795.	7.1	106
136	Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium. Pflugers Archiv European Journal of Physiology, 1985, 405, S83-S88.	2.8	38
137	KCl transport across an insect epithelium: II. Electrochemical potentials and electrophysiology. Journal of Membrane Biology, 1984, 80, 27-47.	2.1	31
138	Treatment With LAU-7b Complements CFTR Modulator Therapy by Improving Lung Physiology and Normalizing Lipid Imbalance Associated With CF Lung Disease. Frontiers in Pharmacology, 0, 13, .	3.5	0