
Maria Pia Protti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1954451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Science Advances, 2021, 7,	10.3	157
2	Flow cytometry data mining by cytoChain identifiesÂdeterminants of exhaustion and stemness in TCRâ€engineered T cells. European Journal of Immunology, 2021, 51, 1992-2005.	2.9	10
3	Thymic Stromal Lymphopoietin and Cancer: Th2-Dependent and -Independent Mechanisms. Frontiers in Immunology, 2020, 11, 2088.	4.8	22
4	B lymphocytes contribute to stromal reaction in pancreatic ductal adenocarcinoma. Oncolmmunology, 2020, 9, 1794359.	4.6	25
5	Circulating Chromogranin A Is Cleaved Into Vasoregulatory Fragments in Patients With Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2020, 10, 613582.	2.8	2
6	Dual Role of Inflammasome Adaptor ASC in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 40.	3.7	33
7	High-throughput Screening of Human Tumor Antigen–specific CD4 T Cells, Including Neoantigen-reactive T Cells. Clinical Cancer Research, 2019, 25, 4320-4331.	7.0	15
8	The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. , 2019, 7, 45.		54
9	Immunomodulatory Drugs in the Context of Autologous Hematopoietic Stem Cell Transplantation Associate With Reduced Pro-tumor T Cell Subsets in Multiple Myeloma. Frontiers in Immunology, 2018, 9, 3171.	4.8	9
10	Tumor-derived factors affecting immune cells. Cytokine and Growth Factor Reviews, 2017, 36, 79-87.	7.2	25
11	T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Research, 2017, 77, 658-671.	0.9	30
12	Quantitative and Qualitative Analysis of Tumor-Associated CD4+ T Cells. Methods in Molecular Biology, 2016, 1393, 37-51.	0.9	0
13	Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8 ⁺ and CD4 ⁺ T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncolmmunology, 2016, 5, e1216290.	4.6	50
14	Basophil Recruitment into Tumor-Draining Lymph Nodes Correlates with Th2 Inflammation and Reduced Survival in Pancreatic Cancer Patients. Cancer Research, 2016, 76, 1792-1803.	0.9	114
15	Non-redundant roles for Th17 and Th22 cells in multiple myeloma clinical correlates. Oncolmmunology, 2016, 5, e1093278.	4.6	13
16	Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncolmmunology, 2015, 4, e1005460.	4.6	37
17	Tumor antigenâ€specific <scp>CD4</scp> ⁺ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens, 2014, 83, 237-246.	1.0	51
18	Immune infiltrates as predictive markers of survival in pancreatic cancer patients. Frontiers in Physiology, 2013, 4, 210.	2.8	81

Maria Pia Protti

#	Article	IF	CITATIONS
19	Cross-talk within the tumor microenvironment mediates Th2-type inflammation in pancreatic cancer. Oncolmmunology, 2012, 1, 89-91.	4.6	61
20	Estimating Point and Interval Frequency of Antigen-Specific CD4+ T Cells Based on Short In Vitro Expansion and Improved Poisson Distribution Analysis. PLoS ONE, 2012, 7, e42340.	2.5	4
21	Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. Journal of Experimental Medicine, 2011, 208, 469-478.	8.5	590
22	The CD4 ⁺ Tâ€cell epitopeâ€binding register is a critical parameter when generating functional HLAâ€DR tetramers with promiscuous peptides. European Journal of Immunology, 2010, 40, 1603-1616.	2.9	6
23	CD4 ⁺ T cells against human papillomavirusâ€18 E7 in patients with highâ€grade cervical lesions associate with the absence of the virus in the cervix. Immunology, 2010, 131, 89-98.	4.4	13
24	Non-Redundant Role for IL-12 and IL-27 in Modulating Th2 Polarization of Carcinoembryonic Antigen Specific CD4 T Cells from Pancreatic Cancer Patients. PLoS ONE, 2009, 4, e7234.	2.5	29
25	Serological Immunoreactivity against Colon Cancer Proteome Varies upon Disease Progression. Journal of Proteome Research, 2008, 7, 504-514.	3.7	20
26	Carcinoembryonic Antigen-Specific but Not Antiviral CD4+ T Cell Immunity Is Impaired in Pancreatic Carcinoma Patients. Journal of Immunology, 2008, 181, 6595-6603.	0.8	97
27	Endosomal Proteases Influence the Repertoire of MAGE-A3 Epitopes Recognized In vivo by CD4+ T Cells. Cancer Research, 2008, 68, 1555-1562.	0.9	12
28	IFN-Î ³ Produced by Human Papilloma Virus-18 E6-Specific CD4+ T Cells Predicts the Clinical Outcome after Surgery in Patients with High-Grade Cervical Lesions. Journal of Immunology, 2007, 179, 7176-7183.	0.8	42
29	MAGE-A3161–175 contains an HLA-DRβ4 restricted natural epitope poorly formed through indirect presentation by dendritic cells. Cancer Immunology, Immunotherapy, 2007, 57, 207-215.	4.2	9
30	Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Molecular Immunology, 2006, 43, 1509-1518.	2.2	49
31	Identification of Novel Subdominant Epitopes on the Carcinoembryonic Antigen Recognized by CD4+ T Cells of Lung Cancer Patients. Journal of Immunology, 2006, 176, 5093-5099.	0.8	20
32	Peptidome from Renal Cell Carcinoma Contains Antigens Recognized by CD4+ T Cells and Shared among Tumors of Different Histology. Clinical Cancer Research, 2006, 12, 4949-4957.	7.0	6
33	Dendritic cell-derived IL-2 production is regulated by IL-15 in humans and in mice. Blood, 2005, 105, 697-702.	1.4	88
34	Generation of functional HLA-DR*1101 tetramers receptive for loading with pathogen- or tumour-derived synthetic peptides. BMC Immunology, 2005, 6, 24.	2.2	18
35	CD4+ T cell immunity against the human papillomavirus-18 E6 transforming protein in healthy donors: identification of promiscuous naturally processed epitopes. European Journal of Immunology, 2005, 35, 806-815.	2.9	12
36	T-Cell Receptor-Mediated Cross-Allergenicity. International Archives of Allergy and Immunology, 2004, 135, 296-305.	2.1	17

MARIA PIA PROTTI

#	Article	IF	CITATIONS
37	Identification of immunodominant regions among promiscuous HLA-DR–restricted CD4+ T-cell epitopes on the tumor antigen MAGE-3. Blood, 2003, 101, 1038-1044.	1.4	82
38	CD4(+) T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Research, 2003, 63, 8481-6.	0.9	45
39	Melanoma Cells Present a MAGE-3 Epitope to CD4+ Cytotoxic T Cells in Association with Histocompatibility Leukocyte Antigen DR11. Journal of Experimental Medicine, 1999, 189, 871-876.	8.5	204
40	Cancer immunotherapy: synthetic and natural peptides in the balance. Trends in Immunology, 1999, 20, 457-462.	7.5	22
41	Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature Biotechnology, 1999, 17, 555-561.	17.5	703
42	Blockade of the Fas-triggered intracellular signaling pathway in human melanomas is circumvented by cytotoxic lymphocytes. , 1999, 81, 573-579.		19
43	Role of antigen-presenting cells in cross-priming of cytotoxic T lymphocytes by apoptotic cells. Journal of Leukocyte Biology, 1999, 66, 247-251.	3.3	28
44	Acetylcholine Receptor-specific CD4+ T Cells in Myasthenia Gravis Patients Have Individual, but Restricted TCR Vbeta Usagea. Annals of the New York Academy of Sciences, 1998, 841, 324-328.	3.8	3
45	Immunotherapy: natural versus synthetic peptides. Trends in Immunology, 1998, 19, 98.	7.5	6
46	Human Melanoma Cells Transfected with the B7-2 Co-Stimulatory Molecule Induce Tumor-Specific CD8 ⁺ Cytotoxic T Lymphocytes <i>In Vitro</i> . Human Gene Therapy, 1998, 9, 1335-1344.	2.7	25
47	TCR Vβ Usage by Acetylcholine Receptor-Specific CD4+T Cells in Myasthenia Gravis. Journal of Autoimmunity, 1997, 10, 203-217.	6.5	12
48	The Nicotinic Acetylcholine Receptor: Structure and Autoimmune Pathology. Critical Reviews in Biochemistry and Molecular Biology, 1994, 29, 69-123.	5.2	134
49	In vitro priming of cytotoxic T lymphocytes against poorly immunogenic epitopes by engineered antigen-presenting cells. European Journal of Immunology, 1994, 24, 2691-2698.	2.9	45
50	Constitutive expression of the heat shock protein 72 kDa in human melanoma cells. Cancer Letters, 1994, 85, 211-216.	7.2	29
51	Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects Journal of Clinical Investigation, 1994, 93, 1020-1028.	8.2	48
52	Autoimmunity Against the Nicotinic Acetylcholine Receptor and the Presynaptic Calcium Channel at the Neuromuscular Junction. E&M Endocrinology and Metabolism, 1994, , 151-189.	0.1	0
53	Myasthenia gravis: recognition of a human autoantigen at the molecular level. Trends in Immunology, 1993, 14, 363-368.	7.5	103
54	T-Helper Epitopes on Human Nicotinic Acetylcholine Receptor in Myasthenia Gravis. Annals of the New York Academy of Sciences, 1993, 681, 198-218.	3.8	33

Maria Pia Protti

#	Article	IF	CITATIONS
55	T helper cell recognition of muscle acetylcholine receptor in myasthenia gravis. Epitopes on the gamma and delta subunits Journal of Clinical Investigation, 1993, 92, 1055-1067.	8.2	39
56	Myasthenia gravis. CD4+ T epitopes on the embryonic gamma subunit of human muscle acetylcholine receptor Journal of Clinical Investigation, 1992, 90, 1558-1567.	8.2	26
57	Molecular mimicry among human autoantigens. Trends in Immunology, 1991, 12, 46-47.	7.5	16
58	Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7792-7796.	7.1	70