Miguel A Del Pozo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1953599/publications.pdf

Version: 2024-02-01

103 papers 11,490 citations

25034 57 h-index 29157 104 g-index

112 all docs

112 docs citations

112 times ranked 13497 citing authors

#	Article	IF	CITATIONS
1	Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nature Communications, 2022, 13, 1174.	12.8	32
2	An unexpected role for PD-L1 in front–rear polarization and directional migration. Journal of Cell Biology, 2022, 221, .	5.2	0
3	Caveolae: Mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Current Opinion in Cell Biology, 2021, 68, 113-123.	5.4	52
4	Extracellular Vesicles: An Emerging Mechanism Governing the Secretion and Biological Roles of Tenascin-C. Frontiers in Immunology, 2021, 12, 671485.	4.8	18
5	Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells, 2021, 10, 1990.	4.1	14
6	Cholesterol-enriched membrane micro-domain deficiency induces doxorubicin resistance via promoting autophagy in breast cancer. Molecular Therapy - Oncolytics, 2021, 23, 311-329.	4.4	6
7	Caveolae: The FAQs. Traffic, 2020, 21, 181-185.	2.7	65
8	Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370, .	12.6	245
9	Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death and Disease, 2020, 11, 647.	6.3	39
10	Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer and Metastasis Reviews, 2020, 39, 485-503.	5.9	11
11	ECM deposition is driven by caveolin-1–dependent regulation of exosomal biogenesis and cargo sorting. Journal of Cell Biology, 2020, 219, .	5.2	58
12	Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging. ACS Omega, 2019, 4, 2719-2727.	3.5	35
13	An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 2019, 10, 5828.	12.8	50
14	ITGB1-dependent upregulation of Caveolin-1 switches $TGF\hat{l}^2$ signalling from tumour-suppressive to oncogenic in prostate cancer. Scientific Reports, 2018, 8, 2338.	3.3	29
15	Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP. Cell Reports, 2018, 25, 1622-1635.e6.	6.4	91
16	Tox_(R)CNN: Deep learning-based nuclei profiling tool for drug toxicity screening. PLoS Computational Biology, 2018, 14, e1006238.	3.2	41
17	Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nature Communications, 2018, 9, 4217.	12.8	106
18	Role of the Endocytosis of Caveolae in Intracellular Signaling and Metabolism. Progress in Molecular and Subcellular Biology, 2018, 57, 203-234.	1.6	7

#	Article	IF	CITATIONS
19	Regulation of chemokine receptor CCR2 recycling by filamin a phosphorylation. Journal of Cell Science, 2017, 130, 490-501.	2.0	17
20	Cell-Based Assays to Study ERK Pathway/Caveolin1 Interactions. Methods in Molecular Biology, 2017, 1487, 163-174.	0.9	0
21	Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nature Immunology, 2017, 18, 1150-1159.	14.5	42
22	AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts. Scientific Reports, 2017, 7, 16497.	3.3	34
23	Protein Localization at Mitochondria-ER Contact Sites in Basal and Stress Conditions. Frontiers in Cell and Developmental Biology, 2017, 5, 107.	3.7	15
24	Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells International, 2016, 2016, 1-11.	2.5	96
25	Characterization of Novel Molecular Mechanisms Favoring Rac1 Membrane Translocation. PLoS ONE, 2016, 11, e0166715.	2.5	10
26	Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells. Blood, 2016, 127, 1930-1939.	1.4	44
27	The Calcineurin Variant $CnA\hat{l}^21$ Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chemical Biology, 2016, 23, 1372-1382.	5.2	30
28	Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 2016, 6, 27351.	3.3	131
29	A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics. Molecular and Cellular Proteomics, 2016, 15, 1740-1760.	3.8	86
30	A novel high content analysis tool reveals Rab8-driven actin and FA reorganization through Rho GTPases and calpain/MT1. Journal of Cell Science, 2016, 129, 1734-49.	2.0	22
31	Caveolinâ€1 deficiency induces a <scp>MEK</scp> â€ <scp>ERK</scp> 1/2â€5nailâ€1â€dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Molecular Medicine, 2015, 7, 102-123.	6.9	79
32	Rac1 Nucleocytoplasmic Shuttling Drives Nuclear Shape Changes and Tumor Invasion. Developmental Cell, 2015, 32, 318-334.	7.0	75
33	Physical principles of membrane remodelling during cell mechanoadaptation. Nature Communications, 2015, 6, 7292.	12.8	91
34	Caveolae – mechanosensitive membrane invaginations linked to actin filaments. Journal of Cell Science, 2015, 128, 2747-58.	2.0	156
35	Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy, 2015, $11,769-784$.	9.1	112
36	Caveolin-1 is required for TGF- \hat{l}^2 -induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17. Cell Death and Disease, 2014, 5, e1326-e1326.	6.3	38

#	Article	IF	CITATIONS
37	The Dioxin receptor modulates Caveolin-1 mobilization during directional migration: role of cholesterol. Cell Communication and Signaling, 2014, 12, 57.	6.5	15
38	Mesenchymal Contribution to Recruitment, Infiltration, and Positioning of Leukocytes in Human Melanoma Tissues. Journal of Investigative Dermatology, 2013, 133, 2255-2264.	0.7	26
39	Cell-Based Fuzzy Metrics Enhance High-Content Screening (HCS) Assay Robustness. Journal of Biomolecular Screening, 2013, 18, 1270-1283.	2.6	8
40	Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews Molecular Cell Biology, 2013, 14, 98-112.	37.0	740
41	Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. Journal of Cell Science, 2012, 125, 3097-113.	2.0	57
42	A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO Journal, 2012, 31, 534-551.	7.8	150
43	Inhibition of Transforming Growth Factor-Activated Kinase 1 (TAK1) Blocks and Reverses Epithelial to Mesenchymal Transition of Mesothelial Cells. PLoS ONE, 2012, 7, e31492.	2.5	46
44	Caveolae. Current Biology, 2012, 22, R114-R116.	3.9	22
45	Biomechanical Remodeling of the Microenvironment by Stromal Caveolin-1 Favors Tumor Invasion and Metastasis. Cell, 2011, 146, 148-163.	28.9	603
46	Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis. Journal of Biological Chemistry, 2011, 286, 35299-35307.	3.4	32
47	Phosphorylated filamin A regulates actin-linked caveolae dynamics. Journal of Cell Science, 2011, 124, 2763-2776.	2.0	89
48	Overcoming anoikis $\hat{a} \in \hat{a}$ pathways to anchorage-independent growth in cancer. Journal of Cell Science, 2011, 124, 3189-3197.	2.0	341
49	Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation. EMBO Journal, 2011, 30, 3913-3927.	7.8	69
50	p38 maintains E-cadherin expression by modulating TAK1–NF-κB during epithelial-to-mesenchymal transition. Journal of Cell Science, 2010, 123, 4321-4331.	2.0	84
51	MT1-MMP Is Required for Myeloid Cell Fusion via Regulation of Rac1 Signaling. Developmental Cell, 2010, 18, 77-89.	7.0	108
52	The Absence of Caveolin-1 Increases Proliferation and Anchorage- Independent Growth by a Rac-Dependent, Erk-Independent Mechanism. Molecular and Cellular Biology, 2009, 29, 5046-5059.	2.3	72
53	Caveolin-1 in cell polarization and directional migration. European Journal of Cell Biology, 2008, 87, 641-647.	3.6	83
54	Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-κB/Snail1 pathway. DMM Disease Models and Mechanisms, 2008, 1, 264-274.	2.4	104

#	Article	IF	CITATIONS
55	Caveolin-1 interacts and cooperates with the transforming growth factor-Î ² type I receptor ALK1 in endothelial caveolae. Cardiovascular Research, 2008, 77, 791-799.	3.8	66
56	Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. Journal of Cell Biology, 2007, 177, 683-694.	5.2	300
57	Intracellular trafficking of raft/caveolae domains: Insights from integrin signaling. Seminars in Cell and Developmental Biology, 2007, 18, 627-637.	5.0	71
58	Integrin regulation of caveolin function. Journal of Cellular and Molecular Medicine, 2007, 11, 969-980.	3.6	80
59	Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 2007, 17, 246-250.	7.9	104
60	Caveolae Internalization Regulates Integrin-Dependent Signaling Pathways. Cell Cycle, 2006, 5, 2179-2182.	2.6	68
61	Integrin regulation of membrane domain trafficking and Rac targeting. Biochemical Society Transactions, 2005, 33, 609-613.	3.4	25
62	Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 2005, 7, 901-908.	10.3	373
63	Integrin Signaling and Lipid Rafts. Cell Cycle, 2004, 3, 723-726.	2.6	22
64	Distinct Functions of Vav1 in JNK1 Activation in Jurkat T Cells Versus Non-Haematopoietic Cells. Scandinavian Journal of Immunology, 2004, 59, 527-535.	2.7	3
65	Integrins Regulate Rac Targeting by Internalization of Membrane Domains. Science, 2004, 303, 839-842.	12.6	496
66	Integrin signaling and lipid rafts. Cell Cycle, 2004, 3, 725-8.	2.6	24
67	Localized Cdc42 Activation, Detected Using a Novel Assay, Mediates Microtubule Organizing Center Positioning in Endothelial Cells in Response to Fluid Shear Stress. Journal of Biological Chemistry, 2003, 278, 31020-31023.	3.4	165
68	Guanine Exchange-Dependent and -Independent Effects of Vav1 on Integrin-Induced T Cell Spreading. Journal of Immunology, 2003, 170, 41-47.	0.8	43
69	Spanish Scientists Working Abroad. Science, 2003, 300, 51b-51.	12.6	3
70	Effects of cell tension on the small GTPase Rac. Journal of Cell Biology, 2002, 158, 153-164.	5.2	220
71	Roles of Microtubule Dynamics and Small GTPase Rac in Endothelial Cell Migration and Lamellipodium Formation under Flow. Journal of Vascular Research, 2002, 39, 465-476.	1.4	75
72	Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nature Cell Biology, 2002, 4, 232-239.	10.3	304

#	Article	IF	Citations
73	Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nature Cell Biology, 2002, 4, 639-647.	10.3	156
74	Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO Journal, 2002, 21, 6791-6800.	7.8	297
75	Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO Journal, 2001, 20, 4639-4647.	7.8	490
76	The Molecular Adapter SLP-76 Relays Signals from Platelet Integrin αIIbβ3 to the Actin Cytoskeleton. Journal of Biological Chemistry, 2001, 276, 5916-5923.	3.4	101
77	Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1042-1046.	7.1	169
78	Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO Journal, 2000, 19, 2008-2014.	7.8	401
79	Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Blood, 2000, 95, 2413-2419.	1.4	106
80	Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Blood, 2000, 95, 2413-2419.	1.4	6
81	Leukocyte polarization in cell migration and immune interactions. EMBO Journal, 1999, 18, 501-511.	7.8	535
82	Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes. European Journal of Immunology, 1999, 29, 3609-3620.	2.9	211
83	The chemokine SDF-1α triggers a chemotactic response and induces cell polarization in human B lymphocytes. European Journal of Immunology, 1998, 28, 2197-2207.	2.9	102
84	The Two Poles of the Lymphocyte: Specialized Cell Compartments for Migration and Recruitment. Cell Adhesion and Communication, 1998, 6, 125-133.	1.7	72
85	CD43 Interacts With Moesin and Ezrin and Regulates Its Redistribution to the Uropods of T Lymphocytes at the Cell-Cell Contacts. Blood, 1998, 91, 4632-4644.	1.4	169
86	CD43 Interacts With Moesin and Ezrin and Regulates Its Redistribution to the Uropods of T Lymphocytes at the Cell-Cell Contacts. Blood, 1998, 91, 4632-4644.	1.4	15
87	Moesin Interacts with the Cytoplasmic Region of Intercellular Adhesion Molecule-3 and Is Redistributed to the Uropod of T Lymphocytes during Cell Polarization. Journal of Cell Biology, 1997, 138, 1409-1423.	5.2	212
88	ICAMs Redistributed by Chemokines to Cellular Uropods as a Mechanism for Recruitment of T Lymphocytes. Journal of Cell Biology, 1997, 137, 493-508.	5.2	119
89	Prevention of cytokine-induced changes in leukocyte adhesion receptors by nonsteroidal antiinflammatory drugs from the oxicam family. Arthritis and Rheumatism, 1997, 40, 143-153.	6.7	66
90	Functional relevance during lymphocyte migration and cellular localization of activated \hat{l}^21 integrins. European Journal of Immunology, 1997, 27, 8-16.	2.9	41

#	Article	IF	CITATIONS
91	Reduced intracellular oxidative metabolism promotes firm adhesion of human polymorphonuclear leukocytes to vascular endothelium under flow conditions. European Journal of Immunology, 1997, 27, 1942-1951.	2.9	18
92	Interleukin-15 induces adhesion receptor redistribution in T lymphocytes. European Journal of Immunology, 1996, 26, 1302-1307.	2.9	51
93	Cellular polarization induced by chemokines: a mechanism for leukocyte recruitment?. Trends in Immunology, 1996, 17, 127-131.	7.5	93
94	Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway Journal of Cell Biology, 1995, 131, 495-508.	5.2	252
95	Prevention of in vitro neutrophil-endothelial attachment through shedding of L-selectin by nonsteroidal antiinflammatory drugs Journal of Clinical Investigation, 1995, 95, 1756-1765.	8.2	146
96	Induction of tyrosine phosphorylation during ICAM-3 and LFA-1-mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase Journal of Cell Biology, 1994, 126, 1277-1286.	5.2	92
97	ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extracellular matrix ligands Journal of Cell Biology, 1994, 127, 867-878.	5 . 2	77
98	Role of ICAM-3 in Intercellular Adhesion and Activation of T Lymphocytes. Cell Adhesion and Communication, 1994, 2, 211-218.	1.7	8
99	Regulation of ICAM-3 (CD50) membrane expression on human neutrophils through a proteolytic shedding mechanism. European Journal of Immunology, 1994, 24, 2586-2594.	2.9	46
100	ICAM-3, the third LFA-1 counterreceptor, is a co-stimulatory molecule for both resting and activated T lymphocytes. European Journal of Immunology, 1993, 23, 2799-2806.	2.9	93
101	ICAM-3 interacts with LFA-1 and regulates the LFA-1/ICAM-1 cell adhesion pathway Journal of Cell Biology, 1993, 123, 1007-1016.	5.2	157
102	Distribution of ICAM-3-bearing cells in normal human tissues. Expression of a novel counter-receptor for LFA-1 in epidermal Langerhans cells. American Journal of Pathology, 1993, 143, 774-83.	3.8	72
103	Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	5