
Philip John Seddon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1953395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing the Science of Reintroduction Biology. Conservation Biology, 2007, 21, 303-312.	4.7	888
2	Directions in reintroduction biology. Trends in Ecology and Evolution, 2008, 23, 20-25.	8.7	790
3	Reversing defaunation: Restoring species in a changing world. Science, 2014, 345, 406-412.	12.6	500
4	Invasive mammal eradication on islands results in substantial conservation gains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4033-4038.	7.1	365
5	From Reintroduction to Assisted Colonization: Moving along the Conservation Translocation Spectrum. Restoration Ecology, 2010, 18, 796-802.	2.9	292
6	Taxonomic bias in reintroduction projects. Animal Conservation, 2005, 8, 51-58.	2.9	219
7	Elevated hormonal stress response and reduced reproductive output in Yellow-eyed penguins exposed to unregulated tourism. General and Comparative Endocrinology, 2007, 152, 54-63.	1.8	208
8	Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conservation Biology, 2015, 29, 31-41.	4.7	178
9	Persistence without intervention: assessing success in wildlife reintroductions. Trends in Ecology and Evolution, 1999, 14, 503.	8.7	175
10	Physiological and reproductive consequences of human disturbance in Humboldt penguins: The need for species-specific visitor management. Biological Conservation, 2006, 133, 95-106.	4.1	140
11	Is It Time for Synthetic Biodiversity Conservation?. Trends in Ecology and Evolution, 2017, 32, 97-107.	8.7	129
12	Nature-based tourism impacts on yellow-eyed penguins Megadyptes antipodes: does unregulated visitor access affect fledging weight and juvenile survival?. Biological Conservation, 2004, 119, 279-285.	4.1	123
13	Helping reintroduced houbara bustards avoid predation: effective anti-predator training and the predictive value of pre-release behaviour. Animal Conservation, 1999, 2, 155-163.	2.9	116
14	Standards for documenting and monitoring bird reintroduction projects. Conservation Letters, 2010, 3, 229-235.	5.7	115
15	Is Reintroduction Biology an Effective Applied Science?. Trends in Ecology and Evolution, 2017, 32, 873-880.	8.7	111
16	The importance of urban gardens in supporting children's biophilia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 274-279.	7.1	102
17	Habituation potential of yellow-eyed penguins depends on sex, character and previous experience with humans. Animal Behaviour, 2009, 77, 289-296.	1.9	98
18	Relict or colonizer? Extinction and range expansion of penguins in southern New Zealand. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 815-821.	2.6	94

#	Article	IF	CITATIONS
19	Lightweight GPS-Tags, One Giant Leap for Wildlife Tracking? An Assessment Approach. PLoS ONE, 2011, 6, e28225.	2.5	87
20	Reintroducing resurrected species: selecting DeExtinction candidates. Trends in Ecology and Evolution, 2014, 29, 140-147.	8.7	84
21	Conservation short cut, or long and winding road? A critique of umbrella species criteria. Oryx, 2008, 42, .	1.0	71
22	Seed dispersal systems in the New Zealand flora. Perspectives in Plant Ecology, Evolution and Systematics, 2009, 11, 285-309.	2.7	65
23	Happy Feet in a Hostile World? The Future of Penguins Depends on Proactive Management of Current and Expected Threats. Frontiers in Marine Science, 2019, 6, .	2.5	64
24	Jellyfish and other gelata as food for four penguin species – insights from predatorâ€borne videos. Frontiers in Ecology and the Environment, 2017, 15, 437-441.	4.0	62
25	Cat-exclusion zones in rural and urban-fringe landscapes: how large would they have to be?. Wildlife Research, 2010, 37, 47.	1.4	56
26	Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds. , 2013, 1, cot013-cot013.		53
27	Managing Marine Biodiversity: The Rising Diversity and Prevalence of Marine Conservation Translocations. Conservation Letters, 2016, 9, 239-251.	5.7	49
28	Infectious diseases of Antarctic penguins: current status and future threats. Polar Biology, 2015, 38, 591-606.	1.2	48
29	Effects of Hatching Order, Sibling Asymmetries, and Nest Site on Survival Analysis of Jackass Penguin Chicks. Auk, 1991, 108, 548-555.	1.4	45
30	The Risks of Assisted Colonization. Conservation Biology, 2009, 23, 788-789.	4.7	45
31	A novel method for fine-scale biodiversity assessment and prediction across diverse urban landscapes reveals social deprivation-related inequalities in private, not public spaces. Landscape and Urban Planning, 2016, 151, 33-44.	7.5	44
32	Importance of lethal control of invasive predators for island conservation. Conservation Biology, 2016, 30, 670-672.	4.7	44
33	Multilocus assignment analyses reveal multiple units and rare migration events in the recently expanded yellowâ€eyed penguin (<i>Megadyptes antipodes</i>). Molecular Ecology, 2009, 18, 2390-2400.	3.9	42
34	Guidelines for Subspecific Substitutions in Wildlife Restoration Projects. Conservation Biology, 1999, 13, 177-184.	4.7	40
35	Restoration of houbara bustard populations in Saudi Arabia: developments and future directions. Oryx, 1995, 29, 136-142.	1.0	38
36	Removal of introduced predators, but not artificial refuge supplementation, increases skink survival in coastal duneland. Biological Conservation, 2010, 143, 72-77.	4.1	38

#	Article	IF	CITATIONS
37	Restricted home ranges reduce children's opportunities to connect to nature: Demographic, environmental and parental influences. Landscape and Urban Planning, 2018, 172, 69-77.	7.5	38
38	Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus). Biological Conservation, 2006, 132, 211-221.	4.1	37
39	Movements of translocated captive-bred and released Critically Endangered kaki (black stilts) Himantopus novaezelandiae and the value of long-term post-release monitoring. Oryx, 2009, 43, 639.	1.0	35
40	Lost in translation or deliberate falsification? Genetic analyses reveal erroneous museum data for historic penguin specimens. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1057-1064.	2.6	34
41	Hatching asynchrony and brood reduction in the jackass penguin: an experimental study. Animal Behaviour, 1991, 42, 347-356.	1.9	32
42	A Tale of Two Islands: The Rescue and Recovery of Endemic Birds in New Zealand and Mauritius. , 2012, , 33-72.		32
43	Straight Line Foraging in Yellow-Eyed Penguins: New Insights into Cascading Fisheries Effects and Orientation Capabilities of Marine Predators. PLoS ONE, 2013, 8, e84381.	2.5	32
44	Breeding Biology of Yellow-Eyed Penguins (Megadyptes antipodes). , 1990, , 45-62.		30
45	Nest-Site Selection by Yellow-Eyed Penguins. Condor, 1989, 91, 653.	1.6	29
46	Seasonal changes in Houbara bustard Chlamydotis undulata macqueenii numbers in Harrat Al Harrah, Saudi Arabia: Implications for managing a remnant population. Biological Conservation, 1996, 75, 139-146.	4.1	29
47	Spending limited resources on de-extinction could lead to net biodiversity loss. Nature Ecology and Evolution, 2017, 1, 53.	7.8	29
48	Quantifying climate change impacts emphasises the importance of managing regional threats in the endangered Yellow-eyed penguin. PeerJ, 2017, 5, e3272.	2.0	29
49	Global policy for assisted colonization of species. Science, 2021, 372, 456-458.	12.6	29
50	Energy Expenditure and Water Flux of Rüppell's Foxes in Saudi Arabia. Physiological and Biochemical Zoology, 2002, 75, 479-488.	1.5	27
51	Seasonal changes in habitat use by Houbara Bustards Chlamydotis [undulata] macqueenii in northern Saudi Arabia. Ibis, 1999, 141, 208-215.	1.9	26
52	Applying science to pressing conservation needs for penguins. Conservation Biology, 2020, 34, 103-112.	4.7	26
53	Understanding determinants of home range behaviour of feral cats as introduced apex predators in insular ecosystems: a spatial approach. Behavioral Ecology and Sociobiology, 2013, 67, 1971-1981.	1.4	24
54	High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin. PeerJ, 2018, 6, e5459.	2.0	24

#	Article	IF	CITATIONS
55	Patterns of nest relief during incubation, and incubation period variability in the yellow-eyed penguin (<i>Megadyptes antipodes</i>). New Zealand Journal of Zoology, 1989, 16, 393-400.	1.1	21
56	Previous experiences with humans affect responses of Snares Penguins to experimental disturbance. Journal of Ornithology, 2012, 153, 621-631.	1.1	21
57	Animal reintroductions in peopled landscapes: moving towards urban-based species restorations in New Zealand. Pacific Conservation Biology, 2018, 24, 349.	1.0	21
58	Know your enemy? Conservation management causes loss of antipredator behaviour to novel predators in New Zealand robins. Animal Behaviour, 2019, 149, 135-142.	1.9	21
59	Diving Depths of the Yellow-eyed Penguin <i>Megadyptes antipodes</i> . Emu, 1990, 90, 53-57.	0.6	20
60	Annual Cycle of Sex Steroids in the Yellow-Eyed Penguin (Megadyptes antipodes) on South Island, New Zealand. General and Comparative Endocrinology, 1994, 94, 113-121.	1.8	20
61	A comparison of derived population estimate, mark-resighting and distance sampling methods to determine the population size of a desert ungulate, the Arabian oryx. Oryx, 2003, 37, .	1.0	20
62	Prioritizing revived species: what are the conservation management implications of deâ€extinction?. Functional Ecology, 2017, 31, 1041-1048.	3.6	20
63	Assessing thermal suitability of translocation release sites for eggâ€laying reptiles with temperatureâ€dependent sex determination: a case study with tuatara. Animal Conservation, 2014, 17, 48-55.	2.9	19
64	Influence of ambient temperature on diurnal activity of Arabian oryx: Implications for reintroduction site selection. Oryx, 2002, 36, 50-55.	1.0	18
65	Direct and Indirect Effects of Grazing by Introduced Mammals on a Native, Arboreal Gecko (<i>Naultinus gemmeus</i>). Journal of Herpetology, 2012, 46, 145-152.	0.5	18
66	Reintroduction modelling: A guide to choosing and combining models for species reintroductions. Journal of Applied Ecology, 2020, 57, 1233-1243.	4.0	18
67	Range size and habitat use of an adult male caracal in northern Saudi Arabia. Journal of Arid Environments, 1998, 40, 109-112.	2.4	17
68	Quantifying fine-scale resource selection by introduced European hedgehogs (Erinaceus europaeus) in ecologically sensitive areas. Biological Invasions, 2013, 15, 1807-1818.	2.4	17
69	Captive rearing affects growth but not survival in translocated juvenile tuatara. Journal of Zoology, 2015, 297, 184-193.	1.7	17
70	BEHAVIOUR OF THE JACKASS PENGUIN CHICK. Ostrich, 1993, 64, 8-12.	1.1	16
71	Structure and Content of Graduate Wildlife Management and Conservation Biology Programs: an International Perspective. Conservation Biology, 2005, 19, 7-14.	4.7	16
72	Temporal genetic samples indicate small effective population size of the endangered yellow-eyed penguin. Conservation Genetics, 2010, 11, 539-546.	1.5	16

#	Article	IF	CITATIONS
73	Quantifying fine-scale resource selection by introduced feral cats to complement management decision-making in ecologically sensitive areas. Biological Invasions, 2014, 16, 1915-1927.	2.4	16
74	Niche and movement models identify corridors of introduced feral cats infringing ecologically sensitive areas in New Zealand. Biological Conservation, 2015, 192, 48-56.	4.1	16
75	Saudi Arabian Tourism Patterns and Attitudes. Annals of Tourism Research, 2003, 30, 957-959.	6.4	15
76	Estimating site occupancy and detectability of an endangered New Zealand lizard, the Otago skink (Oligosoma otagense). Wildlife Research, 2006, 33, 193.	1.4	15
77	Using the <scp>IUCN R</scp> ed <scp>L</scp> ist criteria to assess reintroduction success. Animal Conservation, 2015, 18, 407-408.	2.9	15
78	Release site selection: reintroductions and the habitat concept. Oryx, 2020, 54, 687-695.	1.0	15
79	Restoration of Chlamydotis undulata macqueenii (Houbara Bustard) Populations in Saudi Arabia: A Progress Report. Restoration Ecology, 1996, 4, 81-87.	2.9	14
80	Marathon penguins – Reasons and consequences of long-range dispersal in Fiordland penguins / Tawaki during the pre-moult period. PLoS ONE, 2018, 13, e0198688.	2.5	14
81	The Case for Welfare Biology. Journal of Agricultural and Environmental Ethics, 2021, 34, 1.	1.7	14
82	Behaviour of the yellowâ€eyed penguin chick. Journal of Zoology, 1990, 220, 333-343.	1.7	13
83	Reintroductions, introductions, and the importance of post-release monitoring: lessons from Zanzibar. Oryx, 1999, 33, 89-97.	1.0	13
84	Temperature and egg-laying experience influence breeding performance of captive female houbara bustards. Journal of Avian Biology, 2002, 33, 63-70.	1.2	13
85	Ontogeny of behavior of hand-reared and hen-reared captive houbara bustards. Zoo Biology, 1998, 17, 245-255.	1.2	12
86	Vulpes rueppelli. Mammalian Species, 2001, 678, 1-5.	0.7	12
87	A new approach to study of seabird-fishery overlap: Connecting chick feeding with parental foraging and overlap with fishing vessels. Global Ecology and Conservation, 2015, 4, 632-644.	2.1	12
88	Emblematic forest dwellers reintroduced into cities: resource selection by translocated juvenile kaka. Environmental Epigenetics, 2016, 62, 15-22.	1.8	12
89	Reintroduction. , 2019, , 458-466.		12
90	Matrix Matters:ÂDifferences of Grand Skink Metapopulation Parameters in Native Tussock Grasslands and Exotic Pasture Grasslands. PLoS ONE, 2013, 8, e76076.	2.5	12

#	Article	IF	CITATIONS
91	Effects of season and habitat on bird abundance and diversity in a steppe desert, northern Saudi Arabia. Journal of Arid Environments, 1999, 43, 301-317.	2.4	11

 $_{92}$ lodine deficiency affects hatchability of endangered captive kaki (Black Stilt, Himantopus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{12}^{50}$ 702 Td (

93	Reintroduction of rifleman <i>Acanthisitta chloris</i> to Ulva Island, New Zealand: evaluation of techniques and population persistence. Oryx, 2007, 41, 369-375.	1.0	11
94	Faunal influences on New Zealand seed dispersal characteristics. Evolutionary Ecology, 2011, 25, 1397-1426.	1.2	11
95	Invasive redback spiders (Latrodectus hasseltii) threaten an endangered, endemic New Zealand beetle (Prodontria lewisii). Journal of Insect Conservation, 2015, 19, 1021-1027.	1.4	11
96	The ecology of deâ€extinction. Functional Ecology, 2017, 31, 992-995.	3.6	11
97	Species in the faeces: DNA metabarcoding as a method to determine the diet of the endangered yellow-eyed penguin. Wildlife Research, 2020, 47, 509.	1.4	11
98	Movement and diet of domestic cats on Stewart Island/Rakiura, New Zealand. , 2016, 40, 186-190.		11
99	First breeding by captive-bred houbara bustards introduced in central Saudi Arabia. Journal of Arid Environments, 1997, 35, 527-534.	2.4	10
100	Predicting the distribution of raptors using remote sensing techniques and Geographic Information Systems: A case study with the Eastern New Zealand falcon <i>(Falco novaeseelandiae)</i> . New Zealand Journal of Zoology, 2006, 33, 73-84.	1.1	10
101	Design of a GPS backpack to track European hedgehogs Erinaceus europaeus. European Journal of Wildlife Research, 2011, 57, 1175-1178.	1.4	10
102	Scramble feeding in jackass penguins: within-brood food distribution and the maintenance of sibling asymmetries. Animal Behaviour, 1996, 51, 1383-1390.	1.9	9
103	Mammals of the Harrat al-Harrah Protected Area, Saudi Arabia. Zoology in the Middle East, 1997, 14, 37-46.	0.6	9
104	Estimating the minimum viable population size of kaka (Nestor meridionalis), a potential surrogate species in New Zealand lowland forest. Biological Conservation, 2008, 141, 681-691.	4.1	9
105	Isolation and characterization of microsatellite loci from the yellowâ€eyed penguin (<i>Megadyptes) Tj ETQq1 1</i>	0.784314 4.8	∙rg₿T /Over
106	Transboundary conservation initiatives and opportunities in the Arabian Peninsula. Zoology in the Middle East, 2011, 54, 183-195.	0.6	9
107	The new IUCN guidelines highlight the importance of habitat quality to reintroduction success – Reply to White et al Biological Conservation, 2013, 164, 177.	4.1	9
108	Stomach flushing does not affect apparent adult survival, chick hatching, or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biological Conservation, 2016, 196, 115-123.	4.1	9

#	Article	IF	CITATIONS
109	Influence of Microhabitat Factors on Capture Rates of Lizards in a Coastal New Zealand Environment. Journal of Herpetology, 2007, 41, 187-196.	0.5	8
110	Frankenstein Ecosystems and 21st Century Conservation Agendas: Reply to Oliveira-Santos and Fernandez. Conservation Biology, 2011, 25, 212-212.	4.7	8
111	Landscape resource mapping for wildlife research using very high resolution satellite imagery. Methods in Ecology and Evolution, 2013, 4, 982-992.	5.2	8
112	Species-specific responses by ground-nesting Charadriiformes to invasive predators and river flows in the braided Tasman River of New Zealand. Biological Conservation, 2013, 167, 363-370.	4.1	8
113	Investigator disturbance does not reduce annual breeding success or lifetime reproductive success in a vulnerable long-lived species, the yellow-eyed penguin. Biological Conservation, 2017, 207, 80-89.	4.1	8
114	The northern bald ibis <i>Geronticus eremita</i> : history, current status and future perspectives. Oryx, 2021, 55, 934-946.	1.0	8
115	Resource selection by tuatara following translocation: a comparison of wild-caught and captive-reared juveniles. , 2016, 40, 334-341.		8
116	Reintroductions to $\hat{a} \in \hat{c}$ Ratchet Up $\hat{a} \in \hat{c}$ Public Perceptions of Biodiversity. , 2013, , 137-152.		8
117	Influence of group size and neonatal handling on growth rates, survival, and tameness of juvenile houbara bustards. Zoo Biology, 2001, 20, 423-433.	1.2	7
118	Counting Birds in Urban Areas: A Review of Methods for the Estimation of Abundance. , 2017, , 185-207.		7
119	Parasites Lost: Neglecting a Crucial Element in De-Extinction. Trends in Parasitology, 2018, 34, 9-11.	3.3	7
120	Activity budget for breeding yellow-eyed penguins. New Zealand Journal of Zoology, 1990, 17, 527-532.	1.1	6
121	Optimizing control programmes by integrating data from fine-scale space use by introduced predators. Biological Invasions, 2017, 19, 209-221.	2.4	6
122	Altitudinal distribution of the entire invasive small mammal guild in the eastern dryland zone of New Zealand's Southern Alps. Biological Invasions, 2021, 23, 1837-1857.	2.4	6
123	Using Holocene fossils to model the future: Distribution of climate suitability for tuatara, the last rhynchocephalian. Journal of Biogeography, 2021, 48, 1489-1502.	3.0	6
124	Intended consequences statement. Conservation Science and Practice, 2021, 3, e371.	2.0	6
125	Novel Conditions in Conservation Translocations: A Conservative-Extrapolative Strategic Framework. Frontiers in Conservation Science, 2021, 2, .	1.9	6
126	The role of allochrony in influencing interspecific differences in foraging distribution during the non-breeding season between two congeneric crested penguin species. PLoS ONE, 2022, 17, e0262901.	2.5	6

#	Article	IF	CITATIONS
127	Shifting spatial distributions of Arabian oryx in relation to sporadic water provision and artificial shade. Oryx, 2003, 37, .	1.0	5
128	Yellow-eyed Penguin (Megadyptes antipodes) as a case study to assess the reliability of nest counts. Journal of Ornithology, 2012, 153, 457-466.	1.1	5
129	Selection for protection from insolation results in the visual isolation of Yellow-eyed Penguin <i>Megadyptes antipodes</i> nests. Bird Conservation International, 2015, 25, 192-206.	1.3	5
130	Resource selection by an ancient taxon (Onychophora) in a modern urban landscape: A multi-scale analysis approach to assist in the conservation of an animal phylum. Landscape and Urban Planning, 2016, 148, 27-36.	7.5	5
131	The role of translocation in rewilding. , 2019, , 303-324.		5
132	In situ observation of a record-sized squid prey consumed by a Gentoo penguin. Polar Biology, 2020, 43, 279-283.	1.2	5
133	Creating proxies of extinct species: the bioethics of de-extinction. Emerging Topics in Life Sciences, 2019, 3, 731-735.	2.6	5
134	Patch use and exploratory movements of a resident houbara bustard in northern Saudi Arabia. Journal of Arid Environments, 2002, 50, 683-686.	2.4	4
135	Invasion ecology of the alien tussock grass <i>Nardus stricta</i> (Poaceae) at Lake Pukaki, Canterbury, New Zealand. New Zealand Journal of Botany, 2005, 43, 601-612.	1.1	4
136	Calibrations to estimate absolute numbers of New Zealand fur seal (<i>Arctocephalus forsteri</i>) pups from direct counts. New Zealand Journal of Marine and Freshwater Research, 2009, 43, 1053-1060.	2.0	4
137	Synergy between two invasive species, redback spiders and rabbits, threaten the endangered Cromwell chafer beetle. Biological Invasions, 2017, 19, 1379-1387.	2.4	4
138	Duckling survival of mallards in Southland, New Zealand. Journal of Wildlife Management, 2017, 81, 858-867.	1.8	4
139	Exploring the intersections of governance, constituencies, and risk in genetic interventions. Conservation Science and Practice, 2021, 3, e380.	2.0	4
140	Fat chance? Endangered penguin rehabilitation has mixed conservation outcomes. Conservation Science and Practice, 2021, 3, e452.	2.0	4
141	Stable isotope analysis reveals variable diets of stoats (Mustela erminea) in the alpine zone of New Zealand. New Zealand Journal of Ecology, 2020, 44, .	1.1	4
142	Evidence for high inter-generational individual quality in yellow-eyed penguins. PeerJ, 2017, 5, e2935.	2.0	4
143	Deâ€extinction and Barriers to the Application of New Conservation Tools. Hastings Center Report, 2017, 47, S5-S8.	1.0	3
144	Consistent Site-Specific Foraging Behaviours of Yellow-eyed Penguins/Hoiho Breeding on Stewart Island, New Zealand. Biology, 2022, 11, 844.	2.8	3

9

#	Article	IF	CITATIONS
145	Avian Reintroduction Biology: Current Issues for Science and Management. Avian Biology Research, 2008, 1, 27-50.	0.9	2
146	Making inferences from the reintroduction literature: a response to Bajomi et al Oryx, 2011, 45, 18-18.	1.0	2
147	Reply to Fattorini et al.: Children's selected avoidance of wild greenspace is driven by more than cultural factors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7216-E7217.	7.1	2
148	Trial reintroduction of buff weka to an unfenced mainland site in central South Island, New Zealand. Austral Ecology, 2017, 42, 198-209.	1.5	2
149	Effects of Warm Temperatures on Metabolic Rate and Evaporative Water Loss in Tuatara, a Cool-Climate Rhynchocephalian Survivor. Physiological and Biochemical Zoology, 2018, 91, 950-966.	1.5	2
150	Investigation of two new putative pheromone components of the invasive Australian redback spider, <i>Latrodectus hasseltii</i> , with potential applications for control. New Zealand Journal of Zoology, 2019, 46, 189-200.	1.1	2
151	Monitoring Dynamic Braided River Habitats: Applicability and Efficacy of Aerial Photogrammetry from Manned Aircraft versus Unmanned Aerial Systems. Drones, 2021, 5, 39.	4.9	2
152	Resident houbara bustard populations in Saudi Arabia: do summer ambient temperatures limit distribution?. Journal of Arid Environments, 1997, 37, 551-556.	2.4	1
153	13th Conservation Workshop for the Biodiversity of Arabia. Oryx, 2012, 46, 173-174.	1.0	1
154	De-extinction: Reframing the Possible. Trends in Ecology and Evolution, 2015, 30, 569-570.	8.7	1
155	Effects of unregulated visitor access on chick fledging mass and survival in yellow-eyed penguins. Wildlife Research, 2020, 47, 468.	1.4	1
156	A myna problem: alien species no obstacle to recovery for the Mangaia kingfisher. Oryx, 2022, 56, 44-49.	1.0	1
157	Intake of sugar water by kÄkÄ•in Orokonui Eco-sanctuary. New Zealand Journal of Ecology, 0, , .	1.1	1
158	Automated techniques for measuring meal size in great albatrosses. , 2017, 41, .		1
159	Editorial: Animal Behavior After Translocation Into Novel Environments. Frontiers in Conservation Science, 2022, 3, .	1.9	1
160	Wildlife Restoration: Techniques for Habitat Analysis and Animal Monitoring by Michael L. Morrison (2002), vii + 209 pp., Island Press, Washington, DC, USA. ISBN 1 55963 936 9 (hbk), \$50.00, 1 55963 937 7 (pbk), \$25.00 Oryx, 2003, 37, .	1.0	0
161	14th Conservation Workshop for the Biodiversity of Arabia. Oryx, 2013, 47, 326-327.	1.0	0
162	16th International Conservation Workshop for Arabia's Biodiversity. Oryx, 2015, 49, 392-393.	1.0	0

#	Article	IF	CITATIONS
163	17th International Conservation Workshop for Arabia's Biodiversity. Oryx, 2016, 50, 391-391.	1.0	Ο
164	18th International Conservation Forum for Arabia's Biodiversity. Oryx, 2017, 51, 399-399.	1.0	0
165	19th International Conservation Forum for Arabia's Biodiversity. Oryx, 2018, 52, 409-410.	1.0	0
166	20th Sharjah International Conservation Forum for Arabia's Biodiversity. Oryx, 2019, 53, 413-413.	1.0	0
167	Species Conservation: Lessons from Islands edited by Jamieson A. Copsey, Simon A. Black, Jim J. Groombridge and Carl G. Jones (2018) 396 pp., Cambridge University Press, Cambridge, UK. ISBN 978-0-521899390 (hbk), CBP 82.99 Oryx, 2019, 53, 394-394.	1.0	0
168	21st Sharjah International Conservation Forum for Arabia's Biodiversity. Oryx, 2020, 54, 298-298.	1.0	0
169	Assisted colonization risk assessment—Response. Science, 2021, 372, 925-926.	12.6	0
170	European hedgehogs rear young and enter hibernation in New Zealand's alpine zones. New Zealand Journal of Ecology, 0, , .	1.1	0
171	Are City Kids Missing Out on Nature?. Frontiers for Young Minds, 0, 7, .	0.8	0