List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1952641/publications.pdf Version: 2024-02-01

LIAN LI

#	Article	IF	CITATIONS
1	Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polymer Degradation and Stability, 2010, 95, 763-770.	5.8	227
2	Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polymer Degradation and Stability, 2011, 96, 183-189.	5.8	144
3	Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials, 2019, 197, 41-50.	11.4	139
4	A promising strategy for chemical recycling of carbon fiber/thermoset composites: self-accelerating decomposition in a mild oxidative system. Green Chemistry, 2012, 14, 3260.	9.0	129
5	A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant. PLoS Genetics, 2015, 11, e1004945.	3.5	127
6	Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity. ACS Applied Materials & Interfaces, 2016, 8, 19928-19938.	8.0	113
7	Effects of furan-phosphamide derivative on flame retardancy and crystallization behaviors of poly(lactic acid). Chemical Engineering Journal, 2019, 369, 150-160.	12.7	91
8	Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid. Journal of Materials Chemistry A, 2013, 1, 15242.	10.3	77
9	Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase. Nature Catalysis, 2019, 2, 931-941.	34.4	68
10	Neuropeptide Y receptors: a promising target for cancer imaging and therapy. International Journal of Energy Production and Management, 2015, 2, 215-219.	3.7	65
11	Regulating Effects of Nitrogenous Bases on the Char Structure and Flame Retardancy of Polypropylene/Intumescent Flame Retardant Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 2375-2383.	6.7	65
12	Melamine cyanurate tailored by base and its multi effects on flame retardancy of polyamide 6. Applied Surface Science, 2018, 456, 751-762.	6.1	63
13	Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. Nano Today, 2020, 34, 100910.	11.9	55
14	One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. Nanoscale, 2019, 11, 21759-21766.	5.6	52
15	pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials, 2018, 170, 70-81.	11.4	45
16	Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide. Polymers for Advanced Technologies, 2015, 26, 255-265.	3.2	40
17	Regulating Effect of Exfoliated Clay on Intumescent Char Structure and Flame Retardancy of Polypropylene Composites. Industrial & Engineering Chemistry Research, 2016, 55, 5892-5901.	3.7	40
18	Neuropeptide Y Y1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging. Biomaterials, 2017, 116, 106-117.	11.4	40

#	Article	IF	CITATIONS
19	Manganese-Zeolitic Imidazolate Frameworks-90 with High Blood Circulation Stability for MRI-Guided Tumor Therapy. Nano-Micro Letters, 2019, 11, 61.	27.0	40
20	Flame retardant effect of cytosine pyrophosphate and pentaerythritol on polypropylene. Composites Part B: Engineering, 2020, 180, 107520.	12.0	40
21	Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features. International Journal of Pharmaceutics, 2018, 544, 112-120.	5.2	37
22	Y ₁ -receptor–ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. Nanoscale, 2018, 10, 17038-17052.	5.6	36
23	Hydrophilic modification gigaporous resins with poly(ethylenimine) for high-throughput proteins ion-exchange chromatography. Journal of Chromatography A, 2014, 1343, 109-118.	3.7	34
24	Neuropeptide Y Y ₁ Receptors Meditate Targeted Delivery of Anticancer Drug with Encapsulated Nanoparticles to Breast Cancer Cells with High Selectivity and Its Potential for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 2015, 7, 5574-5582.	8.0	34
25	Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres. Bioprocess and Biosystems Engineering, 2015, 38, 2107-2115.	3.4	34
26	Effects of Zinc Phytate on Flame Retardancy and Thermal Degradation Behaviors of Intumescent Flame-retardant Polypropylene. Polymer-Plastics Technology and Engineering, 2017, 56, 1167-1176.	1.9	34
27	Study of surfaceâ€functionalized nanoâ€&iO ₂ /polybenzoxazine composites. Journal of Applied Polymer Science, 2011, 120, 1525-1532.	2.6	33
28	Toughening and strengthening epoxy resin with flame retardant molecular structure based on tyrosine. Polymer, 2021, 230, 124045.	3.8	32
29	Mixed Metal Metal–Organic Frameworks Derived Carbon Supporting ZnFe ₂ O ₄ /C for High-Performance Magnetic Particle Imaging. Nano Letters, 2021, 21, 2730-2737.	9.1	31
30	Intumescent flame retardation of melamineâ€modified montmorillonite on polyamide 6: Enhancement of condense phase and flame retardance. Polymer Engineering and Science, 2011, 51, 377-385.	3.1	30
31	Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene. RSC Advances, 2014, 4, 32902.	3.6	29
32	Effects of P–N flame retardants based on cytosine on flame retardancy and mechanical properties of polyamide 6. Polymer Degradation and Stability, 2020, 174, 109092.	5.8	29
33	Preparation of nucleotide-based microsphere and its application in intumescent flame retardant polypropylene. Journal of Analytical and Applied Pyrolysis, 2016, 121, 394-402.	5.5	28
34	Enhancement of a hyperbranched charring and foaming agent on flame retardancy of polyamide 6. Polymers for Advanced Technologies, 2011, 22, 2237-2243.	3.2	25
35	Micro-intumescent flame retardant polyamide 6 based on cyclic phosphate grafting phenol formaldehyde. Polymers for Advanced Technologies, 2016, 27, 955-963.	3.2	23
36	Deep Penetration of Targeted Nanobubbles Enhanced Cavitation Effect on Thrombolytic Capacity. Bioconjugate Chemistry, 2020, 31, 369-374.	3.6	23

#	Article	IF	CITATIONS
37	Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy In vivo. Bioactive Materials, 2021, 6, 740-748.	15.6	22
38	Roles of supermolecule structure of melamine phosphomolybdate in intumescent flame retardant polypropylene composites. Journal of Analytical and Applied Pyrolysis, 2016, 119, 139-146.	5.5	21
39	Effects of a semiâ€bioâ€based triazine derivative on intumescent flameâ€retardant polypropylene. Polymers for Advanced Technologies, 2019, 30, 1259-1268.	3.2	21
40	Synthesis of a bioâ€based triazine derivative and its effects on flame retardancy of polypropylene composites. Journal of Applied Polymer Science, 2020, 137, 47367.	2.6	21
41	Effect of <scp>phosphorus–nitrogen</scp> compound on flame retardancy and mechanical properties of polylactic acid. Journal of Applied Polymer Science, 2021, 138, 49829.	2.6	21
42	Effect of alkyl groups in organic part of polyoxo-metalates based ionic liquids on properties of flame retardant polypropylene. Thermochimica Acta, 2016, 631, 51-58.	2.7	19
43	Structure-Guided Directed Evolution of a Carbonyl Reductase Enables the Stereoselective Synthesis of (2 <i>S</i> ,3 <i>S</i>)-2,2-Disubstituted-3-hydroxycyclopentanones via Desymmetric Reduction. Organic Letters, 2020, 22, 3444-3448.	4.6	19
44	Char strengthened by carbon microspheres formed in situ during combustion of IFR/EVA composites catalyzed by solid super acid. RSC Advances, 2014, 4, 34161.	3.6	18
45	Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chemical Communications, 2021, 57, 12417-12435.	4.1	18
46	Roles of organic intercalation agent with flame retardant groups in montmorillonite (MMT) in properties of polypropylene composites. Polymers for Advanced Technologies, 2014, 25, 872-880.	3.2	17
47	In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe ₃ O ₄ â€TiO ₂ nanoparticles in human liver cells. Environmental Toxicology, 2018, 33, 1078-1088.	4.0	17
48	Highly efficient flame retardant poly(lactic acid) using imidazole phosphate poly(ionic liquid). Polymers for Advanced Technologies, 2020, 31, 1765-1775.	3.2	16
49	Konjac glucomannan microspheres for low-cost desalting of protein solution. Carbohydrate Polymers, 2014, 111, 56-62.	10.2	15
50	A highly thermostable and transparent lateral heat spreader based on silver nanowire/polyimide composite. RSC Advances, 2015, 5, 59398-59402.	3.6	15
51	A Y1 receptor ligand synergized with a P-glycoprotein inhibitor improves the therapeutic efficacy of multidrug resistant breast cancer. Biomaterials Science, 2019, 7, 4748-4757.	5.4	15
52	Jointâ€aggregation intumescent flameâ€retardant effect of ammonium polyphosphate and charring agent in polypropylene. Polymers for Advanced Technologies, 2020, 31, 1699-1708.	3.2	15
53	Effect of anion of polyoxometalate based organic-inorganic hybrid material on intumescent flame retardant polypropylene. Polymers for Advanced Technologies, 2016, 27, 1211-1219.	3.2	14
54	Y1 receptor ligand-based nanomicelle as a novel nanoprobe for glioma-targeted imaging and therapy. Nanoscale, 2018, 10, 5845-5851.	5.6	14

#	Article	IF	CITATIONS
55	Synergistic effects of dual imidazolium polyoxometalates on intumescent flame retardant polypropylene. Journal of Applied Polymer Science, 2017, 134, 45491.	2.6	13
56	Mitochondria-targeting zeolitic imidazole frameworks to overcome platinum-resistant ovarian cancer. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110837.	5.0	13
57	Synergistic Effect between a Novel Hyperbranched Flame Retardant and Melamine Pyrophosphate on the Char Forming of Polyamide 6. Polymer-Plastics Technology and Engineering, 2010, 49, 1489-1497.	1.9	12
58	Thermal degradation behaviors of phosphorus–silicon synergistic flameâ€retardant copolyester. Journal of Applied Polymer Science, 2011, 122, 1993-2003.	2.6	12
59	Effect of gasâ€condensed phase synergistic system of 9,10â€dihydroâ€9â€oxoâ€10â€phosphaphenanthreneâ€ and polydopamine on flame retardancy of epoxy resin. Journal of Applied Polymer Science, 2021, 138, 49698.	10â€oxide 2.6	12
60	Evolution of a novel nuclear receptor subfamily with emphasis on the member from the Pacific oyster Crassostrea gigas. Gene, 2015, 567, 164-172.	2.2	11
61	Synthesis and characterization of bisphenol a diphthalimide bisbenzoxazine monomers and the properties of their polybenzoxazines. Journal of Applied Polymer Science, 2011, 121, 2778-2787.	2.6	9
62	Improved Stability of Emulsions in Preparation of Uniform Small-Sized Konjac Glucomanna (KGM) Microspheres with Epoxy-Based Polymer Membrane by Premix Membrane Emulsification. Polymers, 2016, 8, 53.	4.5	9
63	Active targeting nano-scale bubbles enhanced ultrasound cavitation chemotherapy in Y ₁ receptor-overexpressed breast cancer. Journal of Materials Chemistry B, 2020, 8, 6837-6844.	5.8	9
64	Tandem post-synthetic modification of a zeolitic imidazolate framework for CXCR4-overexpressed esophageal squamous cell cancer imaging and therapy. Nanoscale, 2020, 12, 12779-12789.	5.6	9
65	A novel gigaporous GSH affinity medium for high-speed affinity chromatography of GST-tagged proteins. Protein Expression and Purification, 2014, 95, 84-91.	1.3	8
66	The Construction of an Aqueous Two-Phase System to Solve Weak-Aggregation of Gigaporous Poly(Styrene-Divinyl Benzene) Microspheres. Polymers, 2016, 8, 142.	4.5	8
67	Biosafety evaluation of Janus Fe ₃ O ₄ -TiO ₂ nanoparticles in Sprague Dawley rats after intravenous injection. International Journal of Nanomedicine, 2018, Volume 13.6987-7001	6.7	8
68	A D-peptide ligand of neuropeptide Y receptor Y1 serves as nanocarrier traversing of the blood brain barrier and targets glioma. Nano Today, 2022, 44, 101465.	11.9	8
69	Crystallization and Rheological Behaviors of Amino-functionalized Multiwalled Carbon Nanotubes Filled Polyamide 6 Composites. Journal of Macromolecular Science - Physics, 2010, 49, 405-418.	1.0	6
70	Preparation of urea formaldehyde microsphere and its effect on flame retardant ethylene vinyl acetate composites. Polymers for Advanced Technologies, 2018, 29, 1804-1814.	3.2	6
71	The Neuropeptide Y ₁ Receptor Ligand-Modified Cell Membrane Promotes Targeted Photodynamic Therapy of Zeolitic Imidazolate Frameworks for Breast Cancer. Journal of Physical Chemistry Letters, 2021, 12, 11280-11287.	4.6	5
72	Effect of amino acidâ€ŧriazine copolymer on intumescent flame retardant ethyleneâ€vinyl acetate. Journal of Applied Polymer Science, 2022, 139, .	2.6	5

#	Article	IF	CITATIONS
73	A Strategy for Fabrication of Columnar Supramolecular Polymers by Highly Directional Ï€â€Ï€ Stacking and Strong Multiple Ionic Bonds. Macromolecular Chemistry and Physics, 2011, 212, 1016-1021.	2.2	4
74	An Intumescent-Like Flame-Retardant Effect of Hollow Carbon Precursor on Acrylonitrile–Butadiene–Styrene/Oligomeric Aryl Phosphate/Novolac Epoxy Composites. Polymer-Plastics Technology and Engineering, 2016, 55, 1441-1449.	1.9	3
75	Towards A Deeper Understanding of the Interfacial Adsorption of Enzyme Molecules in Gigaporous Polymeric Microspheres. Polymers, 2016, 8, 116.	4.5	1
76	Nucleating effect of surface modified MWNTs on crystallization of MWNTs/PA6 composites. E-Polymers, 2010, 10, .	3.0	0
77	Synergistic Effect between Montmorillonite Intercalated by Melamine and Intumescent Flame Retardant (IFR) on Polypropylene. Advanced Materials Research, 2011, 295-297, 315-318.	0.3	0
78	Thermal Modeling of Randomly Distributed Multi-Walled Carbon Nanotube/Polymer Composites. Advanced Materials Research, 0, 548, 123-127.	0.3	0