Mikhail Drobizhev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1951036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-photon absorption standards in the 550-1600 nm excitation wavelength range. Optics Express, 2008, 16, 4029.	3.4	805
2	Two-photon absorption properties of fluorescent proteins. Nature Methods, 2011, 8, 393-399.	19.0	589
3	Extremely Strong Near-IR Two-Photon Absorption in Conjugated Porphyrin Dimers:Â Quantitative Description with Three-Essential-States Model. Journal of Physical Chemistry B, 2005, 109, 7223-7236.	2.6	258
4	Strong Cooperative Enhancement of Two-Photon Absorption in Dendrimers. Journal of Physical Chemistry B, 2003, 107, 7540-7543.	2.6	249
5	New Two-Photon Activated Photodynamic Therapy Sensitizers Induce Xenograft Tumor Regressions after Near-IR Laser Treatment through the Body of the Host Mouse. Clinical Cancer Research, 2008, 14, 6564-6573.	7.0	229
6	Dendrimer molecules with record large two-photon absorption cross section. Optics Letters, 2001, 26, 1081.	3.3	226
7	Strong Cooperative Enhancement of Two-Photon Absorption in Double-Strand Conjugated Porphyrin Ladder Arrays. Journal of the American Chemical Society, 2006, 128, 12432-12433.	13.7	194
8	Resonance enhancement of two-photon absorption in porphyrins. Chemical Physics Letters, 2002, 355, 175-182.	2.6	164
9	Absolute Two-Photon Absorption Spectra and Two-Photon Brightness of Orange and Red Fluorescent Proteins. Journal of Physical Chemistry B, 2009, 113, 855-859.	2.6	163
10	Strong Two-Photon Absorption in New Asymmetrically Substituted Porphyrins:Â Interference between Charge-Transfer and Intermediate-Resonance Pathways. Journal of Physical Chemistry B, 2006, 110, 9802-9814.	2.6	161
11	Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimerElectronic supplementary information (ESI) available: Experimental procedures. See http://www.rsc.org/suppdata/cp/b3/b313399k/. Physical Chemistry Chemical Physics, 2004, 6, 7.	2.8	106
12	Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution. Chemical Physics Letters, 2002, 361, 504-512.	2.6	100
13	One-, two- and three-photon spectroscopy of ï€-conjugated dendrimers: cooperative enhancement and coherent domains. Journal of Luminescence, 2005, 111, 291-305.	3.1	98
14	Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 971-975.	2.9	84
15	Color Hues in Red Fluorescent Proteins Are Due to Internal Quadratic Stark Effect. Journal of Physical Chemistry B, 2009, 113, 12860-12864.	2.6	78
16	Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption. Chemical Physics Letters, 2003, 370, 690-699.	2.6	72
17	Two-photon absorption of tetraphenylporphin free base. Journal of Luminescence, 2003, 105, 45-55.	3.1	70
18	Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins. Journal of Physical Chemistry B, 2007, 111, 14051-14054.	2.6	63

#	Article	IF	CITATIONS
19	Oneâ€Photon Photophysics and Twoâ€Photon Absorption of 4â€{9,9â€Di(2â€ethylhexyl)â€7â€diphenylaminofluorenâ€2â€yl]â€2,2â€2:6â€2,2â€2â€terpyridine and The Complexes. Chemistry - A European Journal, 2011, 17, 2479-2491.	ir Pl a tanum	Chłaride
20	Describing Two-Photon Absorptivity of Fluorescent Proteins with a New Vibronic Coupling Mechanism. Journal of Physical Chemistry B, 2012, 116, 1736-1744.	2.6	59
21	Green Fluorescent Protein with Anionic Tryptophan-Based Chromophore and Long Fluorescence Lifetime. Biophysical Journal, 2015, 109, 380-389.	0.5	56
22	Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators. Biophysical Journal, 2019, 116, 1873-1886.	0.5	54
23	New Fluorophores Based on Trifluorenylamine with Very Large Intrinsic Three-Photon Absorption Cross Sections. Organic Letters, 2005, 7, 4807-4810.	4.6	51
24	Strong Two-Photon Absorption in Pushâ^'Pull Phthalocyanines:  Role of Resonance Enhancement and Permanent Dipole Moment Change upon Excitation. Journal of Physical Chemistry C, 2008, 112, 848-859.	3.1	48
25	Two-photon sensitive protecting groups operating via intramolecular electron transfer: uncaging of GABA and tryptophan. Chemical Science, 2015, 6, 2419-2426.	7.4	48
26	A genetically encoded fluorescent biosensor for extracellular l-lactate. Nature Communications, 2021, 12, 7058.	12.8	46
27	Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution. Journal of Chemical Physics, 2006, 124, 224701.	3.0	41
28	Uncovering Coherent Domain Structure in a Series of ï€-Conjugated Dendrimers by Simultaneous Three-Photon Absorption. Journal of Physical Chemistry B, 2004, 108, 4221-4226.	2.6	39
29	Polymer Monoliths Containing Two-Photon Absorbing Phenylenevinylene Platinum(II) Acetylide Chromophores for Optical Power Limiting. ACS Applied Materials & Interfaces, 2015, 7, 10795-10805.	8.0	35
30	Persistent spectral hole burning by simultaneous two-photon absorption. Chemical Physics Letters, 2001, 334, 76-82.	2.6	29
31	Two-photon absorption properties of meso-substituted A3-corroles. Chemical Physics Letters, 2008, 462, 246-250.	2.6	28
32	Two-photon absorption in butadiyne-linked porphyrin dimers: torsional and substituent effects. Journal of Materials Chemistry C, 2014, 2, 6802-6809.	5.5	28
33	Amplified Twoâ€Photon Absorption in <i>Trans</i> â€A ₂ B ₂ â€Porphyrins Bearing Nitrophenylethynyl Substituents. ChemPhysChem, 2012, 13, 3966-3972.	2.1	26
34	Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells. Journal of Physical Chemistry B, 2014, 118, 9167-9179.	2.6	26
35	Twoâ€₽hoton Voltmeter for Measuring a Molecular Electric Field. Angewandte Chemie - International Edition, 2015, 54, 7582-7586.	13.8	25
36	Picosecond dynamics of excitations studied in three generations of new 4,4′-bis(diphenylamino)stilbene-based dendrimers. Chemical Physics Letters, 2000, 325, 375-382.	2.6	24

MIKHAIL DROBIZHEV

#	Article	IF	CITATIONS
37	Cooperative Enhancement of Two-Photon Absorption in Self-Assembled Zinc-Porphyrin Nanostructures. Journal of Physical Chemistry C, 2016, 120, 11663-11670.	3.1	23
38	Photo-tautomer of Br-porphyrin: a new frequency-selective material for ultrafast time–space holographic storage. Journal of Luminescence, 2000, 86, 391-397.	3.1	20
39	Single femtosecond exposure recording of an image hologram by spectral hole burning in an unstable tautomer of a phthalocyanine derivative. Optics Letters, 2000, 25, 1633.	3.3	20
40	New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy. Journal of Luminescence, 2010, 130, 1619-1623.	3.1	17
41	Picosecond fluorescence decay and exciton dynamics in a new far-red molecular J-aggregate system. Journal of Luminescence, 2000, 86, 107-116.	3.1	15
42	Two-photon excited coherence gratings in inhomogeneously broadened organic solid. Journal of Modern Optics, 2002, 49, 379-390.	1.3	13
43	Frequency-domain gratings by simultaneous absorption of two photons. Journal of Luminescence, 2002, 98, 341-353.	3.1	12
44	Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines. Journal of Luminescence, 2008, 128, 217-222.	3.1	10
45	Interference between femtosecond pulses observed via time-resolved spontaneous fluorescence. Chemical Physics Letters, 2000, 322, 287-292.	2.6	8
46	Quantum interference in organic solid. Optics Express, 2005, 13, 6033.	3.4	8
47	Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging. Biomedical Optics Express, 2012, 3, 1534.	2.9	7
48	Modeling non-Lorentzian two-photon absorption line shape in dipolar chromophores. Journal of Luminescence, 2010, 130, 1055-1059.	3.1	6
49	Soluble meso-tetrakis(arylethynyl)porphyrins — synthesis and optical properties. Journal of Porphyrins and Phthalocyanines, 2014, 18, 998-1013.	0.8	6
50	All-Optical Sensing of the Components of the Internal Local Electric Field in Proteins. IEEE Photonics Journal, 2012, 4, 1996-2001.	2.0	5
51	Singlet molecular oxygen photosensitization upon two-photon excitation of porphyrin in aqueous solution. Lithuanian Journal of Physics, 2005, 45, 115-123.	0.4	2
52	Electron–phonon coupling in two-photon spectral gratings: role of molecular symmetry. Journal of Luminescence, 2004, 107, 194-202.	3.1	1
53	Quantum interference between multi photon absorption pathways in organic solid. Journal of Luminescence, 2007, 127, 28-33.	3.1	1
54	Absolute Two-photon Absorption Spectra Of Orange And Red Fluorescent Proteins. Biophysical Journal, 2009, 96, 400a-401a.	0.5	1

#	Article	IF	CITATIONS
55	Unified Description of Optical Properties and Photostability of Fluorescent Proteins by Means of the Chromophore-Protein Electrostatic Interactions. Biophysical Journal, 2012, 102, 403a-404a.	0.5	Ο